These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 23883020
1. Investigation of the spin-lattice relaxation of 13CO and 13CO2 adsorbed in the metal-organic frameworks Cu3(btc)2 and Cu(3-x)Zn(x)(btc)2. Gul-E-Noor F, Michel D, Krautscheid H, Haase J, Bertmer M. J Chem Phys; 2013 Jul 21; 139(3):034202. PubMed ID: 23883020 [Abstract] [Full Text] [Related]
2. Characterization of the metal-organic framework compound Cu3(benzene 1,3,5-tricarboxylate)2 by means of 129Xe nuclear magnetic and electron paramagnetic resonance spectroscopy. Böhlmann W, Pöppl A, Sabo M, Kaskel S. J Phys Chem B; 2006 Oct 19; 110(41):20177-81. PubMed ID: 17034193 [Abstract] [Full Text] [Related]
3. Coordinatively Unsaturated Metal-Organic Frameworks M3(btc)2 (M = Cr, Fe, Co, Ni, Cu, and Zn) Catalyzing the Oxidation of CO by N2O: Insight from DFT Calculations. Ketrat S, Maihom T, Wannakao S, Probst M, Nokbin S, Limtrakul J. Inorg Chem; 2017 Nov 20; 56(22):14005-14012. PubMed ID: 29083883 [Abstract] [Full Text] [Related]
6. Proton longitudinal NMR relaxation of poly(p-phenylene sulfide) in the laboratory and the rotating frames reference. Jurga J, Woźniak-Braszak A, Fojud Z, Jurga K. Solid State Nucl Magn Reson; 2004 Jan 20; 25(1-3):47-52. PubMed ID: 14698384 [Abstract] [Full Text] [Related]
7. Computational study of the carbonyl-ene reaction between formaldehyde and propylene encapsulated in coordinatively unsaturated metal-organic frameworks M3(btc)2 (M = Fe, Co, Ni, Cu and Zn). Maihom T, Probst M, Limtrakul J. Phys Chem Chem Phys; 2019 Jan 30; 21(5):2783-2789. PubMed ID: 30667007 [Abstract] [Full Text] [Related]
8. Electron spin relaxation in pseudo-Jahn-Teller low-symmetry Cu(II) complexes in diaqua(L-aspartate)Zn(II).H(2)O crystals. Hoffmann SK, Hilczer W, Goslar J, Massa MM, Calvo R. J Magn Reson; 2001 Nov 30; 153(1):92-102. PubMed ID: 11700085 [Abstract] [Full Text] [Related]
9. ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal-organic framework. Huang L, Joshi KL, van Duin AC, Bandosz TJ, Gubbins KE. Phys Chem Chem Phys; 2012 Aug 28; 14(32):11327-32. PubMed ID: 22796865 [Abstract] [Full Text] [Related]
10. Mixed-Metal Cu-BTC Metal-Organic Frameworks as a Strong Adsorbent for Molecular Hydrogen at Low Temperatures. Peedikakkal AMP, Aljundi IH. ACS Omega; 2020 Nov 10; 5(44):28493-28499. PubMed ID: 33195899 [Abstract] [Full Text] [Related]
11. Extreme-values statistics and dynamics of water at protein interfaces. Korb JP, Goddard Y, Pajski J, Diakova G, Bryant RG. J Phys Chem B; 2011 Nov 10; 115(44):12845-58. PubMed ID: 21932852 [Abstract] [Full Text] [Related]
12. Direct Electrochemical Synthesis of Metal-Organic Frameworks: Cu3 (BTC)2 and Cu(TCPP) on Copper Thin films and Copper-Based Microstructures. Araújo-Cordero AM, Caddeo F, Mahmoudi B, Bron M, Wouter Maijenburg A. Chempluschem; 2024 Mar 10; 89(3):e202300378. PubMed ID: 37997644 [Abstract] [Full Text] [Related]
13. Electronic structure and dynamics of low symmetry Cu2+ complexes in kainite-type crystal KZnClSO4.3H2O: EPR and ESE studies. Hoffmann SK, Goslar J, Tadyszak K. J Magn Reson; 2010 Aug 10; 205(2):293-303. PubMed ID: 20638996 [Abstract] [Full Text] [Related]
14. Methyl group rotation, 1H spin-lattice relaxation in an organic solid, and the analysis of nonexponential relaxation. Beckmann PA, Schneider E. J Chem Phys; 2012 Feb 07; 136(5):054508. PubMed ID: 22320752 [Abstract] [Full Text] [Related]
15. Critical Factors Driving the High Volumetric Uptake of Methane in Cu₃(btc)₂. Hulvey Z, Vlaisavljevich B, Mason JA, Tsivion E, Dougherty TP, Bloch ED, Head-Gordon M, Smit B, Long JR, Brown CM. J Am Chem Soc; 2015 Aug 26; 137(33):10816-25. PubMed ID: 26263038 [Abstract] [Full Text] [Related]
16. The synergistic effect of oxygen and water on the stability of the isostructural family of metal-organic frameworks [Cr3(BTC)2] and [Cu3(BTC)2]. Zhang Z, Wang Y, Jia X, Yang J, Li J. Dalton Trans; 2017 Nov 14; 46(44):15573-15581. PubMed ID: 29094120 [Abstract] [Full Text] [Related]
17. Controlled uptake and release of imatinib from ultrasound nanoparticles Cu3(BTC)2 metal-organic framework in comparison with bulk structure. Abbasi AR, Rizvandi M, Azadbakht A, Rostamnia S. J Colloid Interface Sci; 2016 Jun 01; 471():112-117. PubMed ID: 26994351 [Abstract] [Full Text] [Related]
18. Explanation of spin-lattice relaxation rates of spin labels obtained with multifrequency saturation recovery EPR. Mailer C, Nielsen RD, Robinson BH. J Phys Chem A; 2005 May 12; 109(18):4049-61. PubMed ID: 16833727 [Abstract] [Full Text] [Related]
19. Complex methyl groups dynamics in [(CH3)4P]3Sb2Br9 (PBA) from low to high temperatures by proton spin-lattice relaxation and narrowing of proton NMR spectrum. Latanowicz L, Medycki W, Jakubas R. Solid State Nucl Magn Reson; 2009 Nov 12; 36(3):144-50. PubMed ID: 19853419 [Abstract] [Full Text] [Related]
20. Interpretation of 1H and 2H spin-lattice relaxation dispersions: insights from molecular dynamics simulations of polymer melts. Henritzi P, Bormuth A, Vogel M. Solid State Nucl Magn Reson; 2013 Nov 12; 54():32-40. PubMed ID: 23830720 [Abstract] [Full Text] [Related] Page: [Next] [New Search]