These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


444 related items for PubMed ID: 23891174

  • 1. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M, Shirani E.
    J Biomech; 2013 Sep 03; 46(13):2303-9. PubMed ID: 23891174
    [Abstract] [Full Text] [Related]

  • 2. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J, Lu XY.
    J Biomech; 2006 Sep 03; 39(5):818-32. PubMed ID: 16488221
    [Abstract] [Full Text] [Related]

  • 3. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J, Lu XY.
    J Biomech; 2004 Dec 03; 37(12):1899-911. PubMed ID: 15519598
    [Abstract] [Full Text] [Related]

  • 4. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T, Nagai S.
    Microvasc Res; 2015 Jan 03; 97():115-23. PubMed ID: 25446286
    [Abstract] [Full Text] [Related]

  • 5. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
    Lu Y, Lu X, Zhuang L, Wang W.
    Biorheology; 2002 Jan 03; 39(3-4):431-6. PubMed ID: 12122263
    [Abstract] [Full Text] [Related]

  • 6. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF, Zinani FSF, Rocha LAO, Biserni C.
    Comput Methods Programs Biomed; 2021 Apr 03; 201():105944. PubMed ID: 33535083
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Toward an optimal design principle in symmetric and asymmetric tree flow networks.
    Miguel AF.
    J Theor Biol; 2016 Jan 21; 389():101-9. PubMed ID: 26555845
    [Abstract] [Full Text] [Related]

  • 9. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z, Yang WJ.
    Biomed Mater Eng; 1991 Jan 21; 1(3):173-93. PubMed ID: 1842515
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F, Ghista DN.
    Med Eng Phys; 2012 Sep 21; 34(7):860-72. PubMed ID: 22032834
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV, Giannoglou GD, Chatzizisis YS, Seralidou KV, Parcharidis GE, Louridas GE.
    Med Eng Phys; 2008 Jan 21; 30(1):9-19. PubMed ID: 17412633
    [Abstract] [Full Text] [Related]

  • 16. A computational fluid mechanical study of blood flow in a variety of asymmetric arterial bifurcations.
    Yamaguchi T.
    Front Med Biol Eng; 1993 Jan 21; 5(2):135-41. PubMed ID: 8241030
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.