These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


457 related items for PubMed ID: 23891726

  • 1. RNA structure and dynamics: a base pairing perspective.
    Halder S, Bhattacharyya D.
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [Abstract] [Full Text] [Related]

  • 2. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M, Mukherjee S, Halder S, Bhattacharyya D.
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [Abstract] [Full Text] [Related]

  • 3. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J, Mukherjee S, Mitra A, Bhattacharyya D.
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [Abstract] [Full Text] [Related]

  • 4. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P, Mitra A, Sharma S, Singh H, Bhattacharyya D.
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [Abstract] [Full Text] [Related]

  • 5. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.
    Sponer JE, Spacková N, Kulhanek P, Leszczynski J, Sponer J.
    J Phys Chem A; 2005 Mar 17; 109(10):2292-301. PubMed ID: 16838999
    [Abstract] [Full Text] [Related]

  • 6. Structures of non-canonical tandem base pairs in RNA helices: review.
    Heus HA, Hilbers CW.
    Nucleosides Nucleotides Nucleic Acids; 2003 Mar 17; 22(5-8):559-71. PubMed ID: 14565230
    [Abstract] [Full Text] [Related]

  • 7. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies.
    Roy A, Panigrahi S, Bhattacharyya M, Bhattacharyya D.
    J Phys Chem B; 2008 Mar 27; 112(12):3786-96. PubMed ID: 18318519
    [Abstract] [Full Text] [Related]

  • 8. Isostericity and tautomerism of base pairs in nucleic acids.
    Westhof E.
    FEBS Lett; 2014 Aug 01; 588(15):2464-9. PubMed ID: 24950426
    [Abstract] [Full Text] [Related]

  • 9. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A, Sharma P, Mitra A, Bhattacharyya D, Sponer J, Sponer JE.
    J Phys Chem B; 2009 Feb 12; 113(6):1743-55. PubMed ID: 19152254
    [Abstract] [Full Text] [Related]

  • 10. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K, Spacková N, Stefl R, Sponer J, Leontis NB.
    J Mol Biol; 2001 Nov 09; 313(5):1073-91. PubMed ID: 11700064
    [Abstract] [Full Text] [Related]

  • 11. On the role of the cis Hoogsteen:sugar-edge family of base pairs in platforms and triplets-quantum chemical insights into RNA structural biology.
    Sharma P, Sponer JE, Sponer J, Sharma S, Bhattacharyya D, Mitra A.
    J Phys Chem B; 2010 Mar 11; 114(9):3307-20. PubMed ID: 20163171
    [Abstract] [Full Text] [Related]

  • 12. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X, McDowell JA, Kierzek R, Krugh TR, Turner DH.
    Biochemistry; 2000 Aug 01; 39(30):8970-82. PubMed ID: 10913310
    [Abstract] [Full Text] [Related]

  • 13. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view.
    Sponer JE, Réblova K, Mokdad A, Sychrovský V, Leszczynski J, Sponer J.
    J Phys Chem B; 2007 Aug 02; 111(30):9153-64. PubMed ID: 17602515
    [Abstract] [Full Text] [Related]

  • 14. Feasibility of occurrence of different types of protonated base pairs in RNA: a quantum chemical study.
    Halder A, Halder S, Bhattacharyya D, Mitra A.
    Phys Chem Chem Phys; 2014 Sep 14; 16(34):18383-96. PubMed ID: 25070186
    [Abstract] [Full Text] [Related]

  • 15. RNA solvation: a molecular dynamics simulation perspective.
    Auffinger P, Westhof E.
    Biopolymers; 2014 Sep 14; 56(4):266-74. PubMed ID: 11754340
    [Abstract] [Full Text] [Related]

  • 16. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A, Jagota A, Mittal J.
    J Phys Chem B; 2012 Oct 11; 116(40):12088-94. PubMed ID: 22967176
    [Abstract] [Full Text] [Related]

  • 17. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
    Lee JC, Gutell RR.
    J Mol Biol; 2004 Dec 10; 344(5):1225-49. PubMed ID: 15561141
    [Abstract] [Full Text] [Related]

  • 18. Stability of nucleic acid base pairs in organic solvents: molecular dynamics, molecular dynamics/quenching, and correlated ab initio study.
    Zendlová L, Hobza P, Kabelác M.
    J Phys Chem B; 2007 Mar 15; 111(10):2591-609. PubMed ID: 17302446
    [Abstract] [Full Text] [Related]

  • 19. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis.
    Réblová K, Šponer JE, Špačková N, Beššeová I, Šponer J.
    J Phys Chem B; 2011 Dec 01; 115(47):13897-910. PubMed ID: 21999672
    [Abstract] [Full Text] [Related]

  • 20. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY, Jossinet F, Westhof E.
    Mol Biol Evol; 2010 Aug 01; 27(8):1868-76. PubMed ID: 20211929
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.