These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 23893327

  • 1. A new effective process for production of curdlan oligosaccharides based on alkali-neutralization treatment and acid hydrolysis of curdlan particles in water suspension.
    Li J, Zhu L, Zheng ZY, Zhan XB, Lin CC, Zong Y, Li WJ.
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8495-503. PubMed ID: 23893327
    [Abstract] [Full Text] [Related]

  • 2. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides.
    Kumagai Y, Okuyama M, Kimura A.
    Carbohydr Polym; 2016 Aug 01; 146():396-401. PubMed ID: 27112889
    [Abstract] [Full Text] [Related]

  • 3. Cellulosimicrobium cellulans strain E4-5 enzymatic hydrolysis of curdlan for production of (1 → 3)-linked β-D-glucan oligosaccharides.
    Fu Y, Cheng L, Meng Y, Li S, Zhao X, Du Y, Yin H.
    Carbohydr Polym; 2015 Dec 10; 134():740-4. PubMed ID: 26428180
    [Abstract] [Full Text] [Related]

  • 4. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan.
    Xu X, Wang Q, Xue S, Pan Y, Chen S.
    Carbohydr Polym; 2021 May 01; 259():117775. PubMed ID: 33674017
    [Abstract] [Full Text] [Related]

  • 5. Effective degradation of curdlan powder by a novel endo-β-1→3-glucanase.
    Li K, Chen W, Wang W, Tan H, Li S, Yin H.
    Carbohydr Polym; 2018 Dec 01; 201():122-130. PubMed ID: 30241803
    [Abstract] [Full Text] [Related]

  • 6. Curdlan conformation change during its hydrolysis by multi-domain β-1,3-glucanases.
    Yu P, Zhou F, Yang D.
    Food Chem; 2019 Jul 30; 287():20-27. PubMed ID: 30857690
    [Abstract] [Full Text] [Related]

  • 7. Water-soluble β-1,3-glucan prepared by degradation of curdlan with hydrogen peroxide.
    Zhu Q, Wu S.
    Food Chem; 2019 Jun 15; 283():302-304. PubMed ID: 30722875
    [Abstract] [Full Text] [Related]

  • 8. Dissolution, regeneration and characterization of curdlan in the ionic liquid 1-ethyl-3-methylimidazolium acetate.
    Bai W, Shah F, Wang Q, Liu H.
    Int J Biol Macromol; 2019 Jun 01; 130():922-927. PubMed ID: 30771394
    [Abstract] [Full Text] [Related]

  • 9. Oligosaccharide sensing with chromophore-modified curdlan in aqueous media.
    Fukuhara G, Inoue Y.
    Chem Commun (Camb); 2010 Dec 28; 46(48):9128-30. PubMed ID: 21060919
    [Abstract] [Full Text] [Related]

  • 10. Production and optimization of curdlan produced by Pseudomonas sp. QL212.
    Yang M, Zhu Y, Li Y, Bao J, Fan X, Qu Y, Wang Y, Hu Z, Li Q.
    Int J Biol Macromol; 2016 Aug 28; 89():25-34. PubMed ID: 27086290
    [Abstract] [Full Text] [Related]

  • 11. Degradation of curdlan using hydrogen peroxide.
    Wu S, Cai R, Sun Y.
    Food Chem; 2012 Dec 15; 135(4):2436-8. PubMed ID: 22980825
    [Abstract] [Full Text] [Related]

  • 12. Production of extracellular water-insoluble polysaccharide from Pseudomonas sp.
    Cui JD, Qiu JQ.
    J Agric Food Chem; 2012 May 16; 60(19):4865-71. PubMed ID: 22533491
    [Abstract] [Full Text] [Related]

  • 13. Comparison of the structure and the transport properties of low-set and high-set curdlan hydrogels.
    Gagnon MA, Lafleur M.
    J Colloid Interface Sci; 2011 May 15; 357(2):419-27. PubMed ID: 21402382
    [Abstract] [Full Text] [Related]

  • 14. Characterization of water distribution in xanthan-curdlan hydrogel complex using magnetic resonance imaging, nuclear magnetic resonance relaxometry, rheology, and scanning electron microscopy.
    Williams PD, Oztop MH, McCarthy MJ, McCarthy KL, Lo YM.
    J Food Sci; 2011 Aug 15; 76(6):E472-8. PubMed ID: 22417499
    [Abstract] [Full Text] [Related]

  • 15. Improved quantitative analysis of oligosaccharides from lichenase-hydrolyzed water-soluble barley beta-glucans by high-performance anion-exchange chromatography.
    Yoo DH, Lee BH, Chang PS, Lee HG, Yoo SH.
    J Agric Food Chem; 2007 Mar 07; 55(5):1656-62. PubMed ID: 17284049
    [Abstract] [Full Text] [Related]

  • 16. Special bacterial polysaccharides and polysaccharases.
    Harada T.
    Biochem Soc Symp; 1983 Mar 07; 48():97-116. PubMed ID: 6400487
    [Abstract] [Full Text] [Related]

  • 17. Atomic force microscopy studies on heat-induced gelation of curdlan.
    Ikeda S, Shishido Y.
    J Agric Food Chem; 2005 Feb 09; 53(3):786-91. PubMed ID: 15686434
    [Abstract] [Full Text] [Related]

  • 18. Preparation and gel properties of low molecular weight curdlan by hydrolysis of curdlan with commercial α-amylase.
    Chen YF, Zhu Q, Wu SJ.
    Carbohydr Polym; 2014 Nov 26; 113():362-4. PubMed ID: 25256495
    [Abstract] [Full Text] [Related]

  • 19. Thermal gelation of aqueous curdlan suspension: preparation of curdlan jelly.
    Hino T, Ishimoto H, Shimabayashi S.
    J Pharm Pharmacol; 2003 Apr 26; 55(4):435-41. PubMed ID: 12803764
    [Abstract] [Full Text] [Related]

  • 20. Analysis of a bioactive beta-(1 --> 3) polysaccharide (Curdlan) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Chan TW, Tang KY.
    Rapid Commun Mass Spectrom; 2003 Apr 26; 17(9):887-96. PubMed ID: 12717760
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.