These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 23893914

  • 21. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder.
    Zhang Y, Lin HK, Frimberger D, Epstein RB, Kropp BP.
    BJU Int; 2005 Nov; 96(7):1120-5. PubMed ID: 16225540
    [Abstract] [Full Text] [Related]

  • 22. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J, Yu X.
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [Abstract] [Full Text] [Related]

  • 23. Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells.
    Tavassol F, Schumann P, Lindhorst D, Sinikovic B, Voss A, von See C, Kampmann A, Bormann KH, Carvalho C, Mülhaupt R, Harder Y, Laschke MW, Menger MD, Gellrich NC, Rücker M.
    Tissue Eng Part A; 2010 Jul; 16(7):2265-79. PubMed ID: 20184434
    [Abstract] [Full Text] [Related]

  • 24. Decellularized human fetal intestine as a bioscaffold for regeneration of the rabbit bladder submucosa.
    Kajbafzadeh AM, Khorramirouz R, Masoumi A, Keihani S, Nabavizadeh B.
    J Pediatr Surg; 2018 Sep; 53(9):1781-1788. PubMed ID: 29459044
    [Abstract] [Full Text] [Related]

  • 25. Novel nanofibrous spiral scaffolds for neural tissue engineering.
    Valmikinathan CM, Tian J, Wang J, Yu X.
    J Neural Eng; 2008 Dec; 5(4):422-32. PubMed ID: 18971515
    [Abstract] [Full Text] [Related]

  • 26. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo.
    Pu J, Yuan F, Li S, Komvopoulos K.
    Acta Biomater; 2015 Feb; 13():131-41. PubMed ID: 25463495
    [Abstract] [Full Text] [Related]

  • 27. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen.
    Yen HJ, Tseng CS, Hsu SH, Tsai CL.
    Biomed Microdevices; 2009 Jun; 11(3):615-24. PubMed ID: 19104940
    [Abstract] [Full Text] [Related]

  • 28. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M, Abukawa H, Troulis MJ, Vacanti JP.
    J Biomed Mater Res A; 2008 Mar 01; 84(3):702-9. PubMed ID: 17635029
    [Abstract] [Full Text] [Related]

  • 29. A collagen-poly(lactic acid-co-ɛ-caprolactone) hybrid scaffold for bladder tissue regeneration.
    Engelhardt EM, Micol LA, Houis S, Wurm FM, Hilborn J, Hubbell JA, Frey P.
    Biomaterials; 2011 Jun 01; 32(16):3969-76. PubMed ID: 21377203
    [Abstract] [Full Text] [Related]

  • 30. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA, Wurster S, Webster TJ, Haberstroh KM.
    Biomaterials; 2005 May 01; 26(15):2491-500. PubMed ID: 15585251
    [Abstract] [Full Text] [Related]

  • 31. Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly(lactide-co-glycolide) nanofibrous structure.
    Mirzaei A, Saburi E, Islami M, Ardeshirylajimi A, Omrani MD, Taheri M, Moghadam AS, Ghafouri-Fard S.
    Gene; 2019 Apr 30; 694():26-32. PubMed ID: 30735717
    [Abstract] [Full Text] [Related]

  • 32. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL, Chang CH, Huang CC, Kao WM, Liu WC, Liu HW.
    Biomed Mater Eng; 2014 Apr 30; 24(1):979-85. PubMed ID: 24211987
    [Abstract] [Full Text] [Related]

  • 33. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models.
    Loai Y, Yeger H, Coz C, Antoon R, Islam SS, Moore K, Farhat WA.
    J Biomed Mater Res A; 2010 Sep 15; 94(4):1205-15. PubMed ID: 20694987
    [Abstract] [Full Text] [Related]

  • 34. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG, Crippa GE, de Oliveira PT, Beloti MM, Rosa AL.
    J Tissue Eng Regen Med; 2012 Feb 15; 6(2):155-62. PubMed ID: 21446054
    [Abstract] [Full Text] [Related]

  • 35. Time dependent smooth muscle regeneration and maturation in a bladder acellular matrix graft: histological studies and in vivo functional evaluation.
    Wefer J, Sievert KD, Schlote N, Wefer AE, Nunes L, Dahiya R, Gleason CA, Tanagho EA.
    J Urol; 2001 May 15; 165(5):1755-9. PubMed ID: 11342970
    [Abstract] [Full Text] [Related]

  • 36. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration.
    Wang K, Xu M, Zhu M, Su H, Wang H, Kong D, Wang L.
    J Biomed Mater Res A; 2013 Dec 15; 101(12):3474-81. PubMed ID: 23606405
    [Abstract] [Full Text] [Related]

  • 37. Characterization of a novel composite scaffold consisting of acellular bladder submucosa matrix, polycaprolactone and Pluronic F127 as a substance for bladder reconstruction.
    Jang YJ, Chun SY, Kim GN, Kim JR, Oh SH, Lee JH, Kim BS, Song PH, Yoo ES, Kwon TG.
    Acta Biomater; 2014 Jul 15; 10(7):3117-25. PubMed ID: 24632539
    [Abstract] [Full Text] [Related]

  • 38. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model.
    Leonhäuser D, Stollenwerk K, Seifarth V, Zraik IM, Vogt M, Srinivasan PK, Tolba RH, Grosse JO.
    J Transl Med; 2017 Jan 04; 15(1):3. PubMed ID: 28049497
    [Abstract] [Full Text] [Related]

  • 39. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.
    Wang F, Zhang YC, Zhou H, Guo YC, Su XX.
    J Biomed Mater Res A; 2014 Mar 04; 102(3):760-8. PubMed ID: 23564567
    [Abstract] [Full Text] [Related]

  • 40. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX, Ren J, Chen C, Ren TB, Zhou XY.
    J Biomater Appl; 2008 Mar 04; 22(5):409-32. PubMed ID: 17494961
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.