These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
243 related items for PubMed ID: 23900075
1. Patched1 is required in neural crest cells for the prevention of orofacial clefts. Metzis V, Courtney AD, Kerr MC, Ferguson C, Rondón Galeano MC, Parton RG, Wainwright BJ, Wicking C. Hum Mol Genet; 2013 Dec 15; 22(24):5026-35. PubMed ID: 23900075 [Abstract] [Full Text] [Related]
2. RERE deficiency contributes to the development of orofacial clefts in humans and mice. Kim BJ, Zaveri HP, Kundert PN, Jordan VK, Scott TM, Carmichael J, Scott DA. Hum Mol Genet; 2021 May 12; 30(7):595-602. PubMed ID: 33772547 [Abstract] [Full Text] [Related]
3. Sonic hedgehog regulation of Foxf2 promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis. Everson JL, Fink DM, Yoon JW, Leslie EJ, Kietzman HW, Ansen-Wilson LJ, Chung HM, Walterhouse DO, Marazita ML, Lipinski RJ. Development; 2017 Jun 01; 144(11):2082-2091. PubMed ID: 28506991 [Abstract] [Full Text] [Related]
4. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis. Wang C, Chang JY, Yang C, Huang Y, Liu J, You P, McKeehan WL, Wang F, Li X. J Biol Chem; 2013 Jul 26; 288(30):22174-83. PubMed ID: 23754280 [Abstract] [Full Text] [Related]
6. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y. Hum Mol Genet; 2017 Mar 01; 26(5):860-872. PubMed ID: 28069795 [Abstract] [Full Text] [Related]
7. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation. Almaidhan A, Cesario J, Landin Malt A, Zhao Y, Sharma N, Choi V, Jeong J. BMC Dev Biol; 2014 Jan 17; 14():3. PubMed ID: 24433583 [Abstract] [Full Text] [Related]
8. A392V and R945X mutations cause orofacial clefts via impairing PTCH1 function. He Q, Hao X, Bao S, Wu X, Xu L, Hou Y, Huang Y, Peng L, Huang H, Ding Y, Zhao H. Genomics; 2022 Nov 17; 114(6):110507. PubMed ID: 36265746 [Abstract] [Full Text] [Related]
9. Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate. Heyne GW, Melberg CG, Doroodchi P, Parins KF, Kietzman HW, Everson JL, Ansen-Wilson LJ, Lipinski RJ. PLoS One; 2015 Nov 17; 10(3):e0120517. PubMed ID: 25793997 [Abstract] [Full Text] [Related]
10. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Jin YR, Han XH, Taketo MM, Yoon JK. Development; 2012 May 17; 139(10):1821-30. PubMed ID: 22461561 [Abstract] [Full Text] [Related]
11. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Lan Y, Jiang R. Curr Top Dev Biol; 2022 May 17; 148():13-50. PubMed ID: 35461563 [Abstract] [Full Text] [Related]
12. Cranial nerve development requires co-ordinated Shh and canonical Wnt signaling. Kurosaka H, Trainor PA, Leroux-Berger M, Iulianella A. PLoS One; 2015 May 17; 10(3):e0120821. PubMed ID: 25799573 [Abstract] [Full Text] [Related]
13. SP8 regulates signaling centers during craniofacial development. Kasberg AD, Brunskill EW, Steven Potter S. Dev Biol; 2013 Sep 15; 381(2):312-23. PubMed ID: 23872235 [Abstract] [Full Text] [Related]
14. Identification of sonic hedgehog-regulated genes and biological processes in the cranial neural crest mesenchyme by comparative transcriptomics. Everson JL, Fink DM, Chung HM, Sun MR, Lipinski RJ. BMC Genomics; 2018 Jun 27; 19(1):497. PubMed ID: 29945554 [Abstract] [Full Text] [Related]
15. A role for smoothened during murine lens and cornea development. Choi JJ, Ting CT, Trogrlic L, Milevski SV, Familari M, Martinez G, de Iongh RU. PLoS One; 2014 Jun 27; 9(9):e108037. PubMed ID: 25268479 [Abstract] [Full Text] [Related]
16. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface. Welsh IC, Hart J, Brown JM, Hansen K, Rocha Marques M, Aho RJ, Grishina I, Hurtado R, Herzlinger D, Ferretti E, Garcia-Garcia MJ, Selleri L. J Anat; 2018 Aug 27; 233(2):222-242. PubMed ID: 29797482 [Abstract] [Full Text] [Related]
17. Patched1 patterns Fibroblast growth factor 10 and Forkhead box F1 expression during pulmonary branch formation. Ho UY, Wainwright BJ. Mech Dev; 2017 Oct 27; 147():37-48. PubMed ID: 28939119 [Abstract] [Full Text] [Related]
18. Development of the upper lip: morphogenetic and molecular mechanisms. Jiang R, Bush JO, Lidral AC. Dev Dyn; 2006 May 27; 235(5):1152-66. PubMed ID: 16292776 [Abstract] [Full Text] [Related]
19. Patched1 inhibits epidermal progenitor cell expansion and basal cell carcinoma formation by limiting Igfbp2 activity. Villani RM, Adolphe C, Palmer J, Waters MJ, Wainwright BJ. Cancer Prev Res (Phila); 2010 Oct 27; 3(10):1222-34. PubMed ID: 20858761 [Abstract] [Full Text] [Related]
20. Mutations in Hedgehog acyltransferase (Hhat) perturb Hedgehog signaling, resulting in severe acrania-holoprosencephaly-agnathia craniofacial defects. Dennis JF, Kurosaka H, Iulianella A, Pace J, Thomas N, Beckham S, Williams T, Trainor PA. PLoS Genet; 2012 Oct 27; 8(10):e1002927. PubMed ID: 23055936 [Abstract] [Full Text] [Related] Page: [Next] [New Search]