These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1087 related items for PubMed ID: 23910289

  • 1. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility.
    Liu P, Chen Q, Yuan B, Chen M, Wu S, Lin S, Shen J.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3865-74. PubMed ID: 23910289
    [Abstract] [Full Text] [Related]

  • 2. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y, Zhang J, Feng X, Liu D.
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [Abstract] [Full Text] [Related]

  • 3. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X, Yuan J, Shen J.
    Colloids Surf B Biointerfaces; 2016 Sep 01; 145():275-284. PubMed ID: 27208441
    [Abstract] [Full Text] [Related]

  • 4. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility.
    Wang M, Yuan J, Huang X, Cai X, Li L, Shen J.
    Colloids Surf B Biointerfaces; 2013 Mar 01; 103():52-8. PubMed ID: 23201719
    [Abstract] [Full Text] [Related]

  • 5. Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility.
    Liu PS, Chen Q, Liu X, Yuan B, Wu SS, Shen J, Lin SC.
    Biomacromolecules; 2009 Oct 12; 10(10):2809-16. PubMed ID: 19743844
    [Abstract] [Full Text] [Related]

  • 6. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
    Yuan W, Feng Y, Wang H, Yang D, An B, Zhang W, Khan M, Guo J.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct 12; 33(7):3644-51. PubMed ID: 23910260
    [Abstract] [Full Text] [Related]

  • 7. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP.
    Xiang T, Zhang LS, Wang R, Xia Y, Su BH, Zhao CS.
    J Colloid Interface Sci; 2014 Oct 15; 432():47-56. PubMed ID: 25072519
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer.
    Hou J, Shi Q, Stagnaro P, Ye W, Jin J, Conzatti L, Yin J.
    Colloids Surf B Biointerfaces; 2013 Nov 01; 111():333-41. PubMed ID: 23838201
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control.
    Jhong JF, Sin MC, Kung HH, Chinnathambi A, Alharbi SA, Chang Y.
    J Biomater Sci Polym Ed; 2014 Nov 01; 25(14-15):1558-72. PubMed ID: 24894872
    [Abstract] [Full Text] [Related]

  • 14. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.
    Lei ZY, Liu T, Li WJ, Shi XH, Fan DL.
    Int J Nanomedicine; 2016 Nov 01; 11():5563-5572. PubMed ID: 27822035
    [Abstract] [Full Text] [Related]

  • 15. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma.
    Ladd J, Zhang Z, Chen S, Hower JC, Jiang S.
    Biomacromolecules; 2008 May 01; 9(5):1357-61. PubMed ID: 18376858
    [Abstract] [Full Text] [Related]

  • 16. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions.
    Cai X, Yuan J, Chen S, Li P, Li L, Shen J.
    Mater Sci Eng C Mater Biol Appl; 2014 Mar 01; 36():42-8. PubMed ID: 24433885
    [Abstract] [Full Text] [Related]

  • 17. Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility.
    Xiang T, Yue WW, Wang R, Liang S, Sun SD, Zhao CS.
    Colloids Surf B Biointerfaces; 2013 Oct 01; 110():15-21. PubMed ID: 23693035
    [Abstract] [Full Text] [Related]

  • 18. Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface.
    Nie S, Xue J, Lu Y, Liu Y, Wang D, Sun S, Ran F, Zhao C.
    Colloids Surf B Biointerfaces; 2012 Dec 01; 100():116-25. PubMed ID: 22763005
    [Abstract] [Full Text] [Related]

  • 19. Polymer brushes interfacing blood as a route toward high performance blood contacting devices.
    Surman F, Riedel T, Bruns M, Kostina NY, Sedláková Z, Rodriguez-Emmenegger C.
    Macromol Biosci; 2015 May 01; 15(5):636-46. PubMed ID: 25644402
    [Abstract] [Full Text] [Related]

  • 20. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate.
    Zhang Z, Wang J, Tu Q, Nie N, Sha J, Liu W, Liu R, Zhang Y, Wang J.
    Colloids Surf B Biointerfaces; 2011 Nov 01; 88(1):85-92. PubMed ID: 21752608
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 55.