These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1000 related items for PubMed ID: 23910550

  • 1. The effect of sodium reduction with and without potassium chloride on the survival of Listeria monocytogenes in Cheddar cheese.
    Hystead E, Diez-Gonzalez F, Schoenfuss TC.
    J Dairy Sci; 2013 Oct; 96(10):6172-85. PubMed ID: 23910550
    [Abstract] [Full Text] [Related]

  • 2. Survival of Listeria monocytogenes introduced as a post-aging contaminant during storage of low-salt Cheddar cheese at 4, 10, and 21°C.
    Shrestha S, Grieder JA, McMahon DJ, Nummer BA.
    J Dairy Sci; 2011 Sep; 94(9):4329-35. PubMed ID: 21854905
    [Abstract] [Full Text] [Related]

  • 3. Use of potassium chloride and flavor enhancers in low sodium Cheddar cheese.
    Grummer J, Bobowski N, Karalus M, Vickers Z, Schoenfuss T.
    J Dairy Sci; 2013 Mar; 96(3):1401-18. PubMed ID: 23332837
    [Abstract] [Full Text] [Related]

  • 4. Manufacture of reduced-sodium Cheddar-style cheese with mineral salt replacers.
    Grummer J, Karalus M, Zhang K, Vickers Z, Schoenfuss TC.
    J Dairy Sci; 2012 Jun; 95(6):2830-9. PubMed ID: 22612920
    [Abstract] [Full Text] [Related]

  • 5. Utilization of cheddar cheese containing nisin as an antimicrobial agent in other foods.
    Zottola EA, Yezzi TL, Ajao DB, Roberts RF.
    Int J Food Microbiol; 1994 Dec; 24(1-2):227-38. PubMed ID: 7703016
    [Abstract] [Full Text] [Related]

  • 6. Survival of Salmonella serovars introduced as a post-aging contaminant during storage of low-salt Cheddar cheese at 4, 10, and 21 °C.
    Shrestha S, Grieder JA, McMahon DJ, Nummer BA.
    J Food Sci; 2011 Dec; 76(9):M616-21. PubMed ID: 22416714
    [Abstract] [Full Text] [Related]

  • 7. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese.
    Lu Y, McMahon DJ.
    J Dairy Sci; 2015 Jan; 98(1):78-88. PubMed ID: 25465634
    [Abstract] [Full Text] [Related]

  • 8. Late blowing of Cheddar cheese induced by accelerated ripening and ribose and galactose supplementation in presence of a novel obligatory heterofermentative nonstarter Lactobacillus wasatchensis.
    Ortakci F, Broadbent JR, Oberg CJ, McMahon DJ.
    J Dairy Sci; 2015 Nov; 98(11):7460-72. PubMed ID: 26298753
    [Abstract] [Full Text] [Related]

  • 9. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria.
    Coelho MC, Silva CC, Ribeiro SC, Dapkevicius ML, Rosa HJ.
    Int J Food Microbiol; 2014 Nov 17; 191():53-9. PubMed ID: 25222327
    [Abstract] [Full Text] [Related]

  • 10. Lactic Acid Bacteria in Cheddar Cheese Made with Sodium Chloride, Potassium Chloride or Mixtures of the Two Salts.
    Reddy KA, Marth EH.
    J Food Prot; 1995 Jan 17; 58(1):62-69. PubMed ID: 31121776
    [Abstract] [Full Text] [Related]

  • 11. Effect of salt types and concentrations on the high-pressure inactivation of Listeria monocytogenes in ground chicken.
    Balamurugan S, Ahmed R, Chibeu A, Gao A, Koutchma T, Strange P.
    Int J Food Microbiol; 2016 Feb 02; 218():51-6. PubMed ID: 26613161
    [Abstract] [Full Text] [Related]

  • 12. Comparison of growth and survival of single strains of Lactococcus lactis and Lactococcus cremoris during Cheddar cheese manufacture.
    Poudel R, Thunell RK, Oberg CJ, Overbeck S, Lefevre M, Oberg TS, McMahon DJ.
    J Dairy Sci; 2022 Mar 02; 105(3):2069-2081. PubMed ID: 35033338
    [Abstract] [Full Text] [Related]

  • 13. Effect of salt reduction on growth of Listeria monocytogenes in meat and poultry systems.
    Harper NM, Getty KJ.
    J Food Sci; 2012 Dec 02; 77(12):M669-74. PubMed ID: 23164056
    [Abstract] [Full Text] [Related]

  • 14. Factors affecting calcium lactate and liquid expulsion defects in Cheddar cheese.
    Swearingen PA, Adams DE, Lensmire TL.
    J Dairy Sci; 2004 Mar 02; 87(3):574-82. PubMed ID: 15202641
    [Abstract] [Full Text] [Related]

  • 15. Effect of sodium, potassium, magnesium, and calcium salt cations on pH, proteolysis, organic acids, and microbial populations during storage of full-fat Cheddar cheese.
    McMahon DJ, Oberg CJ, Drake MA, Farkye N, Moyes LV, Arnold MR, Ganesan B, Steele J, Broadbent JR.
    J Dairy Sci; 2014 Mar 02; 97(8):4780-98. PubMed ID: 24913647
    [Abstract] [Full Text] [Related]

  • 16. Survival of Listeria monocytogenes during the manufacture and ripening of Turkish white cheese.
    Erkmen O.
    Nahrung; 2001 Feb 02; 45(1):55-8. PubMed ID: 11253643
    [Abstract] [Full Text] [Related]

  • 17. Nonstarter lactic acid bacteria biofilms and calcium lactate crystals in Cheddar cheese.
    Agarwal S, Sharma K, Swanson BG, Yüksel GU, Clark S.
    J Dairy Sci; 2006 May 02; 89(5):1452-66. PubMed ID: 16606716
    [Abstract] [Full Text] [Related]

  • 18. Application of Enterococcus faecium KE82, an Enterocin A-B-P-Producing Strain, as an Adjunct Culture Enhances Inactivation of Listeria monocytogenes during Traditional Protected Designation of Origin Galotyri Processing.
    Sameli N, Skandamis PN, Samelis J.
    J Food Prot; 2021 Jan 01; 84(1):87-98. PubMed ID: 33411927
    [Abstract] [Full Text] [Related]

  • 19. Antimicrobial treatments to control Listeria monocytogenes in queso fresco.
    Lourenço A, Kamnetz MB, Gadotti C, Diez-Gonzalez F.
    Food Microbiol; 2017 Jun 01; 64():47-55. PubMed ID: 28213034
    [Abstract] [Full Text] [Related]

  • 20. Acidification of Model Cheese Brines To Control Listeria monocytogenes.
    Brown SRB, Millán-Borrero NC, Carbonella JC, Micheletti AJP, D'Amico DJ.
    J Food Prot; 2018 Jan 01; 81(1):79-83. PubMed ID: 29271687
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 50.