These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
595 related items for PubMed ID: 23920091
1. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Lei KF, Wu MH, Hsu CW, Chen YD. Biosens Bioelectron; 2014 Jan 15; 51():16-21. PubMed ID: 23920091 [Abstract] [Full Text] [Related]
2. Non-invasive measurement of cell viability in 3-dimensional cell culture construct. Lei KF, Wu MH, Hsu CW, Chen YD. Annu Int Conf IEEE Eng Med Biol Soc; 2013 Jan 15; 2013():180-3. PubMed ID: 24109654 [Abstract] [Full Text] [Related]
3. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing. Pan Y, Hu N, Wei X, Gong L, Zhang B, Wan H, Wang P. Biosens Bioelectron; 2019 Apr 01; 130():344-351. PubMed ID: 30266425 [Abstract] [Full Text] [Related]
4. Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Torisawa YS, Shiku H, Yasukawa T, Nishizawa M, Matsue T. Biomaterials; 2005 May 01; 26(14):2165-72. PubMed ID: 15576192 [Abstract] [Full Text] [Related]
5. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate. Lei KF, Liu TK, Tsang NM. Biosens Bioelectron; 2018 Feb 15; 100():355-360. PubMed ID: 28946107 [Abstract] [Full Text] [Related]
6. A microfluidic-based frequency-multiplexing impedance sensor (FMIS). Meissner R, Joris P, Eker B, Bertsch A, Renaud P. Lab Chip; 2012 Aug 07; 12(15):2712-8. PubMed ID: 22627460 [Abstract] [Full Text] [Related]
7. Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays. Huang SB, Wu MH, Wang SS, Lee GB. Biomed Microdevices; 2011 Jun 07; 13(3):415-30. PubMed ID: 21234690 [Abstract] [Full Text] [Related]
8. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Liu W, Xu J, Li T, Zhao L, Ma C, Shen S, Wang J. Anal Chem; 2015 Oct 06; 87(19):9752-60. PubMed ID: 26337449 [Abstract] [Full Text] [Related]
9. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models. Kloss D, Kurz R, Jahnke HG, Fischer M, Rothermel A, Anderegg U, Simon JC, Robitzki AA. Biosens Bioelectron; 2008 May 15; 23(10):1473-80. PubMed ID: 18289841 [Abstract] [Full Text] [Related]
10. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array. Sakai Y, Hattori K, Yanagawa F, Sugiura S, Kanamori T, Nakazawa K. Biotechnol J; 2014 Jul 15; 9(7):971-9. PubMed ID: 24802801 [Abstract] [Full Text] [Related]
11. Impedimetric quantification of cells encapsulated in hydrogel cultured in a paper-based microchamber. Lei KF, Huang CH, Tsang NM. Talanta; 2016 Jan 15; 147():628-33. PubMed ID: 26592655 [Abstract] [Full Text] [Related]
12. Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells. Cao JT, Zhu YD, Rana RK, Zhu JJ. Biosens Bioelectron; 2014 Jan 15; 51():97-102. PubMed ID: 23942358 [Abstract] [Full Text] [Related]
13. Impedimetric quantification of the formation process and the chemosensitivity of cancer cell colonies suspended in 3D environment. Lei KF, Wu ZM, Huang CH. Biosens Bioelectron; 2015 Dec 15; 74():878-85. PubMed ID: 26241736 [Abstract] [Full Text] [Related]
14. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Nguyen TA, Yin TI, Reyes D, Urban GA. Anal Chem; 2013 Nov 19; 85(22):11068-76. PubMed ID: 24117341 [Abstract] [Full Text] [Related]
15. Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Liu Q, Yu J, Xiao L, Tang JC, Zhang Y, Wang P, Yang M. Biosens Bioelectron; 2009 Jan 01; 24(5):1305-10. PubMed ID: 18783935 [Abstract] [Full Text] [Related]
16. [Research progress of integrating electrical impedance sensors with microfluidic chips in cell detection]. Gong G, Wang J, Zhang T, Li Q, Sun X. Sheng Wu Gong Cheng Xue Bao; 2024 Jun 25; 40(6):1792-1805. PubMed ID: 38914492 [Abstract] [Full Text] [Related]
17. An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays. Huang SB, Wang SS, Hsieh CH, Lin YC, Lai CS, Wu MH. Lab Chip; 2013 Mar 21; 13(6):1133-43. PubMed ID: 23353927 [Abstract] [Full Text] [Related]
18. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture. Giulitti S, Magrofuoco E, Prevedello L, Elvassore N. Lab Chip; 2013 Nov 21; 13(22):4430-41. PubMed ID: 24064704 [Abstract] [Full Text] [Related]
19. A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays. Xu BY, Hu SW, Qian GS, Xu JJ, Chen HY. Lab Chip; 2013 Sep 21; 13(18):3714-20. PubMed ID: 23884407 [Abstract] [Full Text] [Related]
20. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC, Gupta M, Cheung KC. Biomed Microdevices; 2010 Aug 21; 12(4):647-54. PubMed ID: 20237849 [Abstract] [Full Text] [Related] Page: [Next] [New Search]