These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 23923437
1. Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy. Chiang KY, Chen TY, Lee CH, Lin TL, Wang MK, Jang LY, Lee JF. J Environ Sci (China); 2013 Mar 01; 25(3):626-36. PubMed ID: 23923437 [Abstract] [Full Text] [Related]
2. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy. Fan JX, Wang YJ, Liu C, Wang LH, Yang K, Zhou DM, Li W, Sparks DL. J Hazard Mater; 2014 Aug 30; 279():212-9. PubMed ID: 25064258 [Abstract] [Full Text] [Related]
3. Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan. Chiang KY, Lin KC, Lin SC, Chang TK, Wang MK. J Hazard Mater; 2010 Sep 15; 181(1-3):1066-71. PubMed ID: 20566242 [Abstract] [Full Text] [Related]
4. Evolution of As speciation with depth in a soil profile with a geothermal As origin. Yang PT, Wu WJ, Hashimoto Y, Huang JH, Huang ST, Hseu ZY, Wang SL. Chemosphere; 2020 Feb 15; 241():124956. PubMed ID: 31605996 [Abstract] [Full Text] [Related]
5. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Niazi NK, Singh B, Shah P. Environ Sci Technol; 2011 Sep 01; 45(17):7135-42. PubMed ID: 21797214 [Abstract] [Full Text] [Related]
6. In vitro study of soil arsenic release by human gut microbiota and its intestinal absorption by Caco-2 cells. Yin N, Cai X, Du H, Zhang Z, Li Z, Chen X, Sun G, Cui Y. Chemosphere; 2017 Feb 01; 168():358-364. PubMed ID: 27810535 [Abstract] [Full Text] [Related]
7. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Ohtsuka T, Yamaguchi N, Makino T, Sakurai K, Kimura K, Kudo K, Homma E, Dong DT, Amachi S. Environ Sci Technol; 2013 Jun 18; 47(12):6263-71. PubMed ID: 23668621 [Abstract] [Full Text] [Related]
8. Photoinduced oxidation of arsenite to arsenate on ferrihydrite. Bhandari N, Reeder RJ, Strongin DR. Environ Sci Technol; 2011 Apr 01; 45(7):2783-9. PubMed ID: 21361285 [Abstract] [Full Text] [Related]
9. In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Smith E, Kempson IM, Juhasz AL, Weber J, Rofe A, Gancarz D, Naidu R, McLaren RG, Gräfe M. Environ Sci Technol; 2011 Jul 15; 45(14):6145-52. PubMed ID: 21707121 [Abstract] [Full Text] [Related]
10. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Meunier L, Walker SR, Wragg J, Parsons MB, Koch I, Jamieson HE, Reimer KJ. Environ Sci Technol; 2010 Apr 01; 44(7):2667-74. PubMed ID: 20218545 [Abstract] [Full Text] [Related]
11. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T. Chemosphere; 2011 May 01; 83(7):925-32. PubMed ID: 21420713 [Abstract] [Full Text] [Related]
12. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure]. Shen YT. Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar 01; 34(3):818-22. PubMed ID: 25208420 [Abstract] [Full Text] [Related]
13. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. Hatayama M, Sato T, Shinoda K, Inoue C. J Biosci Bioeng; 2011 Mar 01; 111(3):326-32. PubMed ID: 21185228 [Abstract] [Full Text] [Related]
14. Photoinduced oxidation of arsenite to arsenate in the presence of goethite. Bhandari N, Reeder RJ, Strongin DR. Environ Sci Technol; 2012 Aug 07; 46(15):8044-51. PubMed ID: 22703473 [Abstract] [Full Text] [Related]
15. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A. Environ Pollut; 2018 Jan 07; 232():31-41. PubMed ID: 28966026 [Abstract] [Full Text] [Related]
16. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Xu X, Wang P, Zhang J, Chen C, Wang Z, Kopittke PM, Kretzschmar R, Zhao FJ. Environ Pollut; 2019 Aug 07; 251():952-960. PubMed ID: 31234262 [Abstract] [Full Text] [Related]
17. Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy. Vantelon D, Lanzirotti A, Scheinost AC, Kretzschmar R. Environ Sci Technol; 2005 Jul 01; 39(13):4808-15. PubMed ID: 16053078 [Abstract] [Full Text] [Related]
18. Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils. Hsu LC, Liu YT, Tzou YM. J Hazard Mater; 2015 Oct 15; 296():230-238. PubMed ID: 25935296 [Abstract] [Full Text] [Related]
19. High-iron biosolids compost-induced changes in lead and arsenic speciation and bioaccessibility in co-contaminated soils. Brown SL, Clausen I, Chappell MA, Scheckel KG, Newville M, Hettiarachchi GM. J Environ Qual; 2012 Oct 15; 41(5):1612-22. PubMed ID: 23099953 [Abstract] [Full Text] [Related]
20. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Lin Z, Wang X, Wu X, Liu D, Yin Y, Zhang Y, Xiao S, Xing B. Environ Pollut; 2018 Dec 15; 243(Pt B):1015-1025. PubMed ID: 30248601 [Abstract] [Full Text] [Related] Page: [Next] [New Search]