These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 23925533

  • 1. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.
    Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A.
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8903-12. PubMed ID: 23925533
    [Abstract] [Full Text] [Related]

  • 2. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.
    Liu J, Xie Z, Shin HD, Li J, Du G, Chen J, Liu L.
    J Biotechnol; 2017 Jul 10; 253():1-9. PubMed ID: 28506930
    [Abstract] [Full Text] [Related]

  • 3. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68.
    Knuf C, Nookaew I, Remmers I, Khoomrung S, Brown S, Berry A, Nielsen J.
    Appl Microbiol Biotechnol; 2014 Apr 10; 98(8):3517-27. PubMed ID: 24413918
    [Abstract] [Full Text] [Related]

  • 4. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.
    Chen X, Wang Y, Dong X, Hu G, Liu L.
    Appl Microbiol Biotechnol; 2017 May 10; 101(10):4041-4052. PubMed ID: 28229207
    [Abstract] [Full Text] [Related]

  • 5. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.
    Liu J, Li J, Shin HD, Du G, Chen J, Liu L.
    J Biotechnol; 2017 Nov 20; 262():40-46. PubMed ID: 28965975
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid.
    Trichez D, Auriol C, Baylac A, Irague R, Dressaire C, Carnicer-Heras M, Heux S, François JM, Walther T.
    Microb Cell Fact; 2018 Jul 16; 17(1):113. PubMed ID: 30012131
    [Abstract] [Full Text] [Related]

  • 11. Enhancing L-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization.
    Ding Q, Luo Q, Zhou J, Chen X, Liu L.
    Appl Microbiol Biotechnol; 2018 Oct 16; 102(20):8739-8751. PubMed ID: 30109399
    [Abstract] [Full Text] [Related]

  • 12. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions.
    Knuf C, Nookaew I, Brown SH, McCulloch M, Berry A, Nielsen J.
    Appl Environ Microbiol; 2013 Oct 16; 79(19):6050-8. PubMed ID: 23892740
    [Abstract] [Full Text] [Related]

  • 13. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X, Chen X, Qian Y, Wang Y, Wang L, Qiao W, Liu L.
    Biotechnol Bioeng; 2017 Mar 16; 114(3):656-664. PubMed ID: 27668703
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae].
    Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J.
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct 16; 29(10):1484-93. PubMed ID: 24432663
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.