These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 23946322
1. Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Li AR, Guan KY, Stonor R, Smith SE, Smith FA. Ann Bot; 2013 Oct; 112(6):1089-98. PubMed ID: 23946322 [Abstract] [Full Text] [Related]
3. A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. Sui XL, Zhang T, Tian YQ, Xue RJ, Li AR. New Phytol; 2019 Jan; 221(1):470-481. PubMed ID: 30078224 [Abstract] [Full Text] [Related]
4. Nutrient requirements differ in two Pedicularis species in the absence of a host plant: implication for driving forces in the evolution of host preference of root hemiparasitic plants. Li AR, Li YJ, Smith SE, Smith FA, Guan KY. Ann Bot; 2013 Oct; 112(6):1099-106. PubMed ID: 23946321 [Abstract] [Full Text] [Related]
5. Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis? Sui XL, Li AR, Chen Y, Zhuo L, Liu YY. Mycorrhiza; 2014 Apr; 24(3):187-95. PubMed ID: 24077881 [Abstract] [Full Text] [Related]
6. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE. New Phytol; 2009 Mar; 181(4):938-949. PubMed ID: 19140934 [Abstract] [Full Text] [Related]
7. Arbuscular mycorrhizal fungi may serve as another nutrient strategy for some hemiparasitic species of Pedicularis (Orobanchaceae). Li AR, Guan KY. Mycorrhiza; 2008 Oct; 18(8):429-436. PubMed ID: 18704514 [Abstract] [Full Text] [Related]
8. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX, Su ZZ, Xing HE, Wang FY, Shi ZY, Liu XQ. Huan Jing Ke Xue; 2016 Aug 08; 37(8):3208-3215. PubMed ID: 29964752 [Abstract] [Full Text] [Related]
9. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Zhu YG, Smith FA, Smith SE. Mycorrhiza; 2003 Apr 08; 13(2):93-100. PubMed ID: 12682831 [Abstract] [Full Text] [Related]
10. Early Root Herbivory Impairs Arbuscular Mycorrhizal Fungal Colonization and Shifts Defence Allocation in Establishing Plantago lanceolata. Bennett AE, Macrae AM, Moore BD, Caul S, Johnson SN. PLoS One; 2013 Apr 08; 8(6):e66053. PubMed ID: 23840398 [Abstract] [Full Text] [Related]
11. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Karasawa T, Hodge A, Fitter AH. Plant Cell Environ; 2012 Apr 08; 35(4):819-28. PubMed ID: 22070553 [Abstract] [Full Text] [Related]
12. Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. Christophersen HM, Smith FA, Smith SE. New Phytol; 2009 Dec 08; 184(4):962-74. PubMed ID: 19754635 [Abstract] [Full Text] [Related]
13. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Chen B, Xiao X, Zhu YG, Smith FA, Xie ZM, Smith SE. Sci Total Environ; 2007 Jul 01; 379(2-3):226-34. PubMed ID: 17157359 [Abstract] [Full Text] [Related]
14. A Legume Host Benefits More from Arbuscular Mycorrhizal Fungi Than a Grass Host in the Presence of a Root Hemiparasitic Plant. Sui X, Guan K, Chen Y, Xue R, Li A. Microorganisms; 2022 Feb 15; 10(2):. PubMed ID: 35208894 [Abstract] [Full Text] [Related]
15. Mycorrhiza alters the profile of root hairs in trifoliate orange. Wu QS, Liu CY, Zhang DJ, Zou YN, He XH, Wu QH. Mycorrhiza; 2016 Apr 15; 26(3):237-47. PubMed ID: 26499883 [Abstract] [Full Text] [Related]
16. Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.). Jin H, Germida JJ, Walley FL. Mycorrhiza; 2013 Jan 15; 23(1):45-59. PubMed ID: 22692547 [Abstract] [Full Text] [Related]
17. Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. Gabriel-Neumann E, Neumann G, Leggewie G, George E. J Plant Physiol; 2011 Jun 15; 168(9):911-9. PubMed ID: 21382646 [Abstract] [Full Text] [Related]
18. Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Stewart LI, Hamel C, Hogue R, Moutoglis P. Mycorrhiza; 2005 Nov 15; 15(8):612-619. PubMed ID: 16059721 [Abstract] [Full Text] [Related]
19. The differential behavior of arbuscular mycrorrhizal fungi in interaction with Astragalus sinicus L. under salt stress. Peng J, Li Y, Shi P, Chen X, Lin H, Zhao B. Mycorrhiza; 2011 Jan 15; 21(1):27-33. PubMed ID: 20393756 [Abstract] [Full Text] [Related]
20. Wheat root trait plasticity, nutrient acquisition and growth responses are dependent on specific arbuscular mycorrhizal fungus and plant genotype interactions. de Souza Campos PM, Borie F, Cornejo P, Meier S, López-Ráez JA, López-Garcia Á, Seguel A. J Plant Physiol; 2021 Jan 15; 256():153297. PubMed ID: 33197827 [Abstract] [Full Text] [Related] Page: [Next] [New Search]