These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
389 related items for PubMed ID: 23949912
1. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis. Nakamura M, Bessho S, Wada S. Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912 [Abstract] [Full Text] [Related]
2. Simulation of erythrocyte deformation in a high shear flow. Nakamura M, Bessho S, Wada S. Annu Int Conf IEEE Eng Med Biol Soc; 2009 Jan; 2009():2358-61. PubMed ID: 19965186 [Abstract] [Full Text] [Related]
3. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow. Nakamura M, Bessho S, Wada S. Int J Numer Method Biomed Eng; 2013 Jan; 29(1):114-28. PubMed ID: 23293072 [Abstract] [Full Text] [Related]
4. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. Polwaththe-Gallage HN, Saha SC, Sauret E, Flower R, Senadeera W, Gu Y. Biomed Eng Online; 2016 Dec 28; 15(Suppl 2):161. PubMed ID: 28155717 [Abstract] [Full Text] [Related]
5. A Red Blood Cell Model to Estimate the Hemolysis Fingerprint of Cardiovascular Devices. Toninato R, Fadda G, Susin FM. Artif Organs; 2018 Jan 28; 42(1):58-67. PubMed ID: 28722138 [Abstract] [Full Text] [Related]
6. Large scale simulation of red blood cell aggregation in shear flows. Xu D, Kaliviotis E, Munjiza A, Avital E, Ji C, Williams J. J Biomech; 2013 Jul 26; 46(11):1810-7. PubMed ID: 23809770 [Abstract] [Full Text] [Related]
7. A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements. Chen Y, Sharp MK. Artif Organs; 2011 Feb 26; 35(2):145-56. PubMed ID: 21091515 [Abstract] [Full Text] [Related]
8. Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress. Simmonds MJ, Atac N, Baskurt OK, Meiselman HJ, Yalcin O. Biorheology; 2014 Feb 26; 51(2-3):171-85. PubMed ID: 24948378 [Abstract] [Full Text] [Related]
9. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K, Wada S, Liu H. Biomech Model Mechanobiol; 2014 Aug 26; 13(4):735-46. PubMed ID: 24104211 [Abstract] [Full Text] [Related]
10. Tension of red blood cell membrane in simple shear flow. Omori T, Ishikawa T, Barthès-Biesel D, Salsac AV, Imai Y, Yamaguchi T. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov 26; 86(5 Pt 2):056321. PubMed ID: 23214889 [Abstract] [Full Text] [Related]
11. A strain-based model for mechanical hemolysis based on a coarse-grained red blood cell model. Ezzeldin HM, de Tullio MD, Vanella M, Solares SD, Balaras E. Ann Biomed Eng; 2015 Jun 26; 43(6):1398-409. PubMed ID: 25691396 [Abstract] [Full Text] [Related]
12. Biphasic impairment of erythrocyte deformability in response to repeated, short duration exposures of supraphysiological, subhaemolytic shear stress. McNamee AP, Tansley GD, Sabapathy S, Simmonds MJ. Biorheology; 2016 Nov 09; 53(3-4):137-149. PubMed ID: 27662271 [Abstract] [Full Text] [Related]
13. A viscoelastic model of shear-induced hemolysis in laminar flow. Arwatz G, Smits AJ. Biorheology; 2013 Nov 09; 50(1-2):45-55. PubMed ID: 23619152 [Abstract] [Full Text] [Related]
14. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis. Horobin JT, Sabapathy S, Simmonds MJ. Artif Organs; 2017 Nov 09; 41(11):1017-1025. PubMed ID: 28543744 [Abstract] [Full Text] [Related]
15. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method. Vahidkhah K, Fatouraee N. Int J Numer Method Biomed Eng; 2012 Feb 09; 28(2):239-56. PubMed ID: 25099328 [Abstract] [Full Text] [Related]
16. Extending the Power-Law Hemolysis Model to Complex Flows. Faghih MM, Keith Sharp M. J Biomech Eng; 2016 Dec 01; 138(12):. PubMed ID: 27657486 [Abstract] [Full Text] [Related]
17. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions. Ye SS, Ng YC, Tan J, Leo HL, Kim S. Theor Biol Med Model; 2014 May 13; 11():19. PubMed ID: 24885482 [Abstract] [Full Text] [Related]
19. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Secomb TW, Styp-Rekowska B, Pries AR. Ann Biomed Eng; 2007 May 13; 35(5):755-65. PubMed ID: 17380392 [Abstract] [Full Text] [Related]
20. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow. Hashemi Z, Rahnama M. Int J Numer Method Biomed Eng; 2016 Nov 13; 32(11):. PubMed ID: 26729644 [Abstract] [Full Text] [Related] Page: [Next] [New Search]