These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


560 related items for PubMed ID: 23950167

  • 1. Time and volume dependence of dead space in healthy and surfactant-depleted rat lungs during spontaneous breathing and mechanical ventilation.
    Dassow C, Schwenninger D, Runck H, Guttmann J.
    J Appl Physiol (1985); 2013 Nov 01; 115(9):1268-74. PubMed ID: 23950167
    [Abstract] [Full Text] [Related]

  • 2. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.
    Hurley EH, Keszler M.
    Arch Dis Child Fetal Neonatal Ed; 2017 Mar 01; 102(2):F126-F130. PubMed ID: 27515984
    [Abstract] [Full Text] [Related]

  • 3. Comparing the Effects of Two Different Levels of Hyperoxygenation on Gas Exchange During Open Endotracheal Suctioning: A Randomized Crossover Study.
    Vianna JR, Pires Di Lorenzo VA, Simões MM, Jamami M.
    Respir Care; 2017 Jan 01; 62(1):92-101. PubMed ID: 28003557
    [Abstract] [Full Text] [Related]

  • 4. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS, Davis K, Johannigman JA, Branson RD.
    Respir Care; 2000 Mar 01; 45(3):306-12. PubMed ID: 10771799
    [Abstract] [Full Text] [Related]

  • 5. Rationale of dead space measurement by volumetric capnography.
    Tusman G, Sipmann FS, Bohm SH.
    Anesth Analg; 2012 Apr 01; 114(4):866-74. PubMed ID: 22383673
    [Abstract] [Full Text] [Related]

  • 6. Clinical use of volumetric capnography in mechanically ventilated patients.
    Kremeier P, Böhm SH, Tusman G.
    J Clin Monit Comput; 2020 Feb 01; 34(1):7-16. PubMed ID: 31152285
    [Abstract] [Full Text] [Related]

  • 7. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs.
    Sturesson LW, Malmkvist G, Allvin S, Collryd M, Bodelsson M, Jonson B.
    Br J Anaesth; 2016 Aug 01; 117(2):243-9. PubMed ID: 27440637
    [Abstract] [Full Text] [Related]

  • 8. Anatomic dead space cannot be predicted by body weight.
    Brewer LM, Orr JA, Pace NL.
    Respir Care; 2008 Jul 01; 53(7):885-91. PubMed ID: 18593489
    [Abstract] [Full Text] [Related]

  • 9. Effective ventilation at conventional rates with tidal volume below instrumental dead space: a bench study.
    Keszler M, Montaner MB, Abubakar K.
    Arch Dis Child Fetal Neonatal Ed; 2012 May 01; 97(3):F188-92. PubMed ID: 22102635
    [Abstract] [Full Text] [Related]

  • 10. When does apparatus dead space matter for the pediatric patient?
    Pearsall MF, Feldman JM.
    Anesth Analg; 2014 Apr 01; 118(4):776-80. PubMed ID: 24651232
    [Abstract] [Full Text] [Related]

  • 11. Utility of deadspace and capnometry measurements in determination of surfactant efficacy in surfactant-depleted lungs.
    Wenzel U, Rüdiger M, Wagner MH, Wauer RR.
    Crit Care Med; 1999 May 01; 27(5):946-52. PubMed ID: 10362418
    [Abstract] [Full Text] [Related]

  • 12. Volumetric capnography: the time has come.
    Suarez-Sipmann F, Bohm SH, Tusman G.
    Curr Opin Crit Care; 2014 Jun 01; 20(3):333-9. PubMed ID: 24785676
    [Abstract] [Full Text] [Related]

  • 13. Effects of spontaneous breathing with BIPAP on pulmonary gas exchange in patients with ARDS.
    Hörmann C, Baum M, Putensen C, Kleinsasser A, Benzer H.
    Acta Anaesthesiol Scand Suppl; 1997 Jun 01; 111():152-5. PubMed ID: 9420993
    [No Abstract] [Full Text] [Related]

  • 14. A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2.
    Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A.
    Pediatrics; 2008 Dec 01; 122(6):e1219-24. PubMed ID: 19029196
    [Abstract] [Full Text] [Related]

  • 15. Monitoring Dead Space in Mechanically Ventilated Children: Volumetric Capnography Versus Time-Based Capnography.
    Bhalla AK, Rubin S, Newth CJ, Ross P, Morzov R, Soto-Campos G, Khemani R.
    Respir Care; 2015 Nov 01; 60(11):1548-55. PubMed ID: 26199451
    [Abstract] [Full Text] [Related]

  • 16. The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system.
    Enekvist BJ, Luttropp HH, Johansson A.
    J Clin Anesth; 2008 May 01; 20(3):170-4. PubMed ID: 18502358
    [Abstract] [Full Text] [Related]

  • 17. Effect of external dead space removal on CO2 homeostasis in mechanically ventilated adult Covid-19 patients.
    Öhman T, Jalde FC, Fredby M, Björne H, Karlsson J.
    Acta Anaesthesiol Scand; 2023 Aug 01; 67(7):936-942. PubMed ID: 37354078
    [Abstract] [Full Text] [Related]

  • 18. Volume Capnography in the Intensive Care Unit: Physiological Principles, Measurements, and Calculations.
    Kreit JW.
    Ann Am Thorac Soc; 2019 Mar 01; 16(3):291-300. PubMed ID: 30657700
    [Abstract] [Full Text] [Related]

  • 19. Volumetric capnography in the mechanically ventilated patient.
    Blanch L, Romero PV, Lucangelo U.
    Minerva Anestesiol; 2006 Jun 01; 72(6):577-85. PubMed ID: 16682932
    [Abstract] [Full Text] [Related]

  • 20. Predicting dead space ventilation in critically ill patients using clinically available data.
    Frankenfield DC, Alam S, Bekteshi E, Vender RL.
    Crit Care Med; 2010 Jan 01; 38(1):288-91. PubMed ID: 19789453
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.