These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 23954596
1. The crystal structure and biochemical properties of DHBPS from Streptococcus pneumoniae, a potential anti-infective target for Gram-positive bacteria. Li J, Hua Z, Miao L, Jian T, Wei Y, Shasha Z, Shaocheng Z, Zhen G, Hongpeng Z, Ailong H, Deqiang W. Protein Expr Purif; 2013 Oct; 91(2):161-8. PubMed ID: 23954596 [Abstract] [Full Text] [Related]
2. [Cloning and characterization of a new antibacterial target, 3,4-dihydroxy-2-butanone-4-phosphate synthase]. Jin L, Zhou H, Zhao S, Yang W, Niu S, Wang D. Wei Sheng Wu Xue Bao; 2012 Nov 04; 52(11):1415-20. PubMed ID: 23383514 [Abstract] [Full Text] [Related]
3. Potential anti-bacterial drug target: structural characterization of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Salmonella typhimurium LT2. Kumar P, Singh M, Gautam R, Karthikeyan S. Proteins; 2010 Dec 04; 78(16):3292-303. PubMed ID: 20806221 [Abstract] [Full Text] [Related]
4. Structural basis for pH dependent monomer-dimer transition of 3,4-dihydroxy 2-butanone-4-phosphate synthase domain from Mycobacterium tuberculosis. Singh M, Kumar P, Karthikeyan S. J Struct Biol; 2011 May 04; 174(2):374-84. PubMed ID: 21296160 [Abstract] [Full Text] [Related]
5. The crystal structure reveals the molecular mechanism of bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II (Rv1415) from Mycobacterium tuberculosis. Singh M, Kumar P, Yadav S, Gautam R, Sharma N, Karthikeyan S. Acta Crystallogr D Biol Crystallogr; 2013 Sep 04; 69(Pt 9):1633-44. PubMed ID: 23999287 [Abstract] [Full Text] [Related]
7. Molecular dynamics studies unravel role of conserved residues responsible for movement of ions into active site of DHBPS. Shinde RN, Karthikeyan S, Singh B. Sci Rep; 2017 Jan 12; 7():40452. PubMed ID: 28079168 [Abstract] [Full Text] [Related]
8. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis. Liao DI, Calabrese JC, Wawrzak Z, Viitanen PV, Jordan DB. Structure; 2001 Jan 10; 9(1):11-8. PubMed ID: 11342130 [Abstract] [Full Text] [Related]
9. Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli. Richter G, Volk R, Krieger C, Lahm HW, Röthlisberger U, Bacher A. J Bacteriol; 1992 Jun 10; 174(12):4050-6. PubMed ID: 1597419 [Abstract] [Full Text] [Related]
10. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate. Steinbacher S, Schiffmann S, Bacher A, Fischer M. Acta Crystallogr D Biol Crystallogr; 2004 Jul 10; 60(Pt 7):1338-40. PubMed ID: 15213409 [Abstract] [Full Text] [Related]
11. The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand binding studies reveal the location of the active site. Kelly MJ, Ball LJ, Krieger C, Yu Y, Fischer M, Schiffmann S, Schmieder P, Kühne R, Bermel W, Bacher A, Richter G, Oschkinat H. Proc Natl Acad Sci U S A; 2001 Nov 06; 98(23):13025-30. PubMed ID: 11687623 [Abstract] [Full Text] [Related]
12. Solution structure and function of an essential CMP kinase of Streptococcus pneumoniae. Yu L, Mack J, Hajduk PJ, Kakavas SJ, Saiki AY, Lerner CG, Olejniczak ET. Protein Sci; 2003 Nov 06; 12(11):2613-21. PubMed ID: 14573872 [Abstract] [Full Text] [Related]
13. Potential anti-infective targets in pathogenic yeasts: structure and properties of 3,4-dihydroxy-2-butanone 4-phosphate synthase of Candida albicans. Echt S, Bauer S, Steinbacher S, Huber R, Bacher A, Fischer M. J Mol Biol; 2004 Aug 20; 341(4):1085-96. PubMed ID: 15328619 [Abstract] [Full Text] [Related]
14. Acyl carrier protein synthases from gram-negative, gram-positive, and atypical bacterial species: Biochemical and structural properties and physiological implications. McAllister KA, Peery RB, Zhao G. J Bacteriol; 2006 Jul 20; 188(13):4737-48. PubMed ID: 16788183 [Abstract] [Full Text] [Related]
15. A XerD recombinase with unusual active site motifs in Streptococcus pneumoniae. Reichmann P, Hakenbeck R. J Mol Microbiol Biotechnol; 2002 Jan 20; 4(1):101-10. PubMed ID: 11763967 [Abstract] [Full Text] [Related]
16. Studies on the lumazine synthase/riboflavin synthase complex of Bacillus subtilis: crystal structure analysis of reconstituted, icosahedral beta-subunit capsids with bound substrate analogue inhibitor at 2.4 A resolution. Ritsert K, Huber R, Turk D, Ladenstein R, Schmidt-Bäse K, Bacher A. J Mol Biol; 1995 Oct 13; 253(1):151-67. PubMed ID: 7473709 [Abstract] [Full Text] [Related]
17. Crystal structure analysis of icosahedral lumazine synthase from Salmonella typhimurium, an antibacterial drug target. Kumar P, Singh M, Karthikeyan S. Acta Crystallogr D Biol Crystallogr; 2011 Feb 13; 67(Pt 2):131-9. PubMed ID: 21245535 [Abstract] [Full Text] [Related]
18. The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. García P, Paz González M, García E, García JL, López R. Mol Microbiol; 1999 Jul 13; 33(1):128-38. PubMed ID: 10411730 [Abstract] [Full Text] [Related]
19. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. Alexeev D, Alexeeva M, Baxter RL, Campopiano DJ, Webster SP, Sawyer L. J Mol Biol; 1998 Nov 27; 284(2):401-19. PubMed ID: 9813126 [Abstract] [Full Text] [Related]
20. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism. Steinbacher S, Schiffmann S, Richter G, Huber R, Bacher A, Fischer M. J Biol Chem; 2003 Oct 24; 278(43):42256-65. PubMed ID: 12904291 [Abstract] [Full Text] [Related] Page: [Next] [New Search]