These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 23955338

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion.
    Jun Y, Xu H, Thorngren N, Wickner W.
    EMBO J; 2007 Dec 12; 26(24):4935-45. PubMed ID: 18007597
    [Abstract] [Full Text] [Related]

  • 10. HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites.
    Krämer L, Ungermann C.
    Mol Biol Cell; 2011 Jul 15; 22(14):2601-11. PubMed ID: 21613544
    [Abstract] [Full Text] [Related]

  • 11. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion.
    Starai VJ, Hickey CM, Wickner W.
    Mol Biol Cell; 2008 Jun 15; 19(6):2500-8. PubMed ID: 18385512
    [Abstract] [Full Text] [Related]

  • 12. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion.
    Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ.
    EMBO J; 2004 Jul 21; 23(14):2765-76. PubMed ID: 15241469
    [Abstract] [Full Text] [Related]

  • 13. HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly.
    Hickey CM, Wickner W.
    Mol Biol Cell; 2010 Jul 01; 21(13):2297-305. PubMed ID: 20462954
    [Abstract] [Full Text] [Related]

  • 14. Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis.
    Zucchi PC, Zick M.
    Mol Biol Cell; 2011 Dec 01; 22(23):4635-46. PubMed ID: 21976702
    [Abstract] [Full Text] [Related]

  • 15. Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion.
    Orr A, Wickner W, Rusin SF, Kettenbach AN, Zick M.
    Mol Biol Cell; 2015 Jan 15; 26(2):305-15. PubMed ID: 25411340
    [Abstract] [Full Text] [Related]

  • 16. Molecular mechanism of membrane docking by the Vam7p PX domain.
    Lee SA, Kovacs J, Stahelin RV, Cheever ML, Overduin M, Setty TG, Burd CG, Cho W, Kutateladze TG.
    J Biol Chem; 2006 Dec 01; 281(48):37091-101. PubMed ID: 16984909
    [Abstract] [Full Text] [Related]

  • 17. HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex.
    Orr A, Song H, Rusin SF, Kettenbach AN, Wickner W.
    Mol Biol Cell; 2017 Apr 01; 28(7):975-983. PubMed ID: 28148647
    [Abstract] [Full Text] [Related]

  • 18. Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity.
    Izawa R, Onoue T, Furukawa N, Mima J.
    J Biol Chem; 2012 Jan 27; 287(5):3445-53. PubMed ID: 22174414
    [Abstract] [Full Text] [Related]

  • 19. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones.
    Mima J, Hickey CM, Xu H, Jun Y, Wickner W.
    EMBO J; 2008 Aug 06; 27(15):2031-42. PubMed ID: 18650938
    [Abstract] [Full Text] [Related]

  • 20. Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification.
    Fratti RA, Collins KM, Hickey CM, Wickner W.
    J Biol Chem; 2007 May 18; 282(20):14861-7. PubMed ID: 17400548
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.