These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 23963875
1. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards. Calvo-Garrido C, Usall J, Viñas I, Elmer PA, Cases E, Teixidó N. Pest Manag Sci; 2014 Jun; 70(6):922-30. PubMed ID: 23963875 [Abstract] [Full Text] [Related]
2. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Calvo-Garrido C, Viñas I, Elmer PA, Usall J, Teixidó N. Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713 [Abstract] [Full Text] [Related]
3. Reduction of Botrytis cinerea Colonization of and Sporulation on Bunch Trash. Fedele G, González-Domínguez E, Si Ammour M, Languasco L, Rossi V. Plant Dis; 2020 Mar; 104(3):808-816. PubMed ID: 31944905 [Abstract] [Full Text] [Related]
4. Quantification of Botrytis cinerea in Grapevine Bunch Trash by Real-Time PCR. Si Ammour M, Fedele G, Morcia C, Terzi V, Rossi V. Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375 [Abstract] [Full Text] [Related]
5. A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards. González-Domínguez E, Fedele G, Caffi T, Delière L, Sauris P, Gramaje D, Ramos-Saez de Ojer JL, Díaz-Losada E, Díez-Navajas AM, Bengoa P, Rossi V. Pest Manag Sci; 2019 Feb; 75(2):324-332. PubMed ID: 29885027 [Abstract] [Full Text] [Related]
6. Control strategies against grey mould (Botrytis cinerea Pers.: Fr) and corresponding fungicide residues in grapes and wines. Edder P, Ortelli D, Viret O, Cognard E, De Montmollin A, Zali O. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):719-25. PubMed ID: 19680943 [Abstract] [Full Text] [Related]
7. BotRisk: simulating the annual bunch rot risk on grapevines (Vitis vinifera L. cv. Riesling) based on meteorological data. Molitor D, Baus O, Didry Y, Junk J, Hoffmann L, Beyer M. Int J Biometeorol; 2020 Sep; 64(9):1571-1582. PubMed ID: 32436136 [Abstract] [Full Text] [Related]
8. Effectiveness of control strategies against Botrytis cinerea in vineyard and evaluation of the residual fungicide concentrations. Gabriolotto C, Monchiero M, Negre M, Spadaro D, Gullino ML. J Environ Sci Health B; 2009 May; 44(4):389-96. PubMed ID: 19365756 [Abstract] [Full Text] [Related]
9. Botrytis infection warnings in strawberry: reduced enhanced chemical control. Van Laer S, Hauke K, Meesters P, Creemers P. Commun Agric Appl Biol Sci; 2005 May; 70(3):61-71. PubMed ID: 16637160 [Abstract] [Full Text] [Related]
10. Fungicide Resistance Profiles of Botrytis cinerea Isolates From Michigan Vineyards and Development of a TaqMan Assay for Detection of Fenhexamid Resistance. Alzohairy SA, Gillett J, Saito S, Naegele RN, Xiao CL, Miles TD. Plant Dis; 2021 Feb; 105(2):285-294. PubMed ID: 32762329 [Abstract] [Full Text] [Related]
11. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Wang X, Glawe DA, Kramer E, Weller D, Okubara PA. Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476 [Abstract] [Full Text] [Related]
12. French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Walker AS, Micoud A, Rémuson F, Grosman J, Gredt M, Leroux P. Pest Manag Sci; 2013 Jun; 69(6):667-78. PubMed ID: 23576292 [Abstract] [Full Text] [Related]
13. Mechanical Leaf Removal for Improved Botrytis Bunch Rot Control in Vitis vinifera 'Pinot gris' and 'Pinot noir' Grapevines in the Northeastern United States. Hed B, Centinari M. Plant Dis; 2024 Oct; 108(10):3156-3162. PubMed ID: 38902880 [Abstract] [Full Text] [Related]
14. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes. Calvo-Garrido C, Viñas I, Elmer P, Usall J, Teixidó N. Lett Appl Microbiol; 2013 Oct; 57(4):356-61. PubMed ID: 23789778 [Abstract] [Full Text] [Related]
15. Integration of mathematical modeling and target-based application of biocontrol agents for the control of Botrytis cinerea in vineyards. Altieri V, Rossi V, Fedele G. Pest Manag Sci; 2024 Sep; 80(9):4352-4360. PubMed ID: 38634563 [Abstract] [Full Text] [Related]
16. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Parafati L, Vitale A, Restuccia C, Cirvilleri G. Food Microbiol; 2015 May; 47():85-92. PubMed ID: 25583341 [Abstract] [Full Text] [Related]
17. Consideration of Latent Infections Improves the Prediction of Botrytis Bunch Rot Severity in Vineyards. Fedele G, González-Domínguez E, Delière L, Díez-Navajas AM, Rossi V. Plant Dis; 2020 May; 104(5):1291-1297. PubMed ID: 32191557 [Abstract] [Full Text] [Related]
18. Occurrence of Botrytis cinerea and Subsequent Disease Expression at Different Positions on Leaves and Bunches of Grape. Holz G, Gütschow M, Coertze S, Calitz FJ. Plant Dis; 2003 Apr; 87(4):351-358. PubMed ID: 30831828 [Abstract] [Full Text] [Related]
19. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype. Ciliberti N, Fermaud M, Roudet J, Rossi V. Phytopathology; 2015 Aug; 105(8):1090-6. PubMed ID: 26218433 [Abstract] [Full Text] [Related]
20. Botrytis pseudocinerea Is a Significant Pathogen of Several Crop Plants but Susceptible to Displacement by Fungicide-Resistant B. cinerea Strains. Plesken C, Weber RW, Rupp S, Leroch M, Hahn M. Appl Environ Microbiol; 2015 Oct; 81(20):7048-56. PubMed ID: 26231644 [Abstract] [Full Text] [Related] Page: [Next] [New Search]