These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
540 related items for PubMed ID: 23964564
21. Synthesis and biological evaluation of heteroanalogues of kotalanol and de-O-sulfonated kotalanol. Mohan S, Jayakanthan K, Nasi R, Kuntz DA, Rose DR, Pinto BM. Org Lett; 2010 Mar 05; 12(5):1088-91. PubMed ID: 20143790 [Abstract] [Full Text] [Related]
22. Capillary zone electrophoresis method for the separation of glucosidase inhibitors in extracts of Salacia reticulata, a plant used in ayurvedic treatments of type-2 diabetes. Zandberg WF, Mohan S, Kumarasamy J, Pinto BM. Anal Chem; 2010 Jun 15; 82(12):5323-30. PubMed ID: 20491445 [Abstract] [Full Text] [Related]
23. Potent glucosidase inhibitors: de-O-sulfonated ponkoranol and its stereoisomer. Eskandari R, Kuntz DA, Rose DR, Pinto BM. Org Lett; 2010 Apr 02; 12(7):1632-5. PubMed ID: 20218632 [Abstract] [Full Text] [Related]
24. New synthetic routes to chain-extended selenium, sulfur, and nitrogen analogues of the naturally occurring glucosidase inhibitor salacinol and their inhibitory activities against recombinant human maltase glucoamylase. Liu H, Nasi R, Jayakanthan K, Sim L, Heipel H, Rose DR, Pinto BM. J Org Chem; 2007 Aug 17; 72(17):6562-72. PubMed ID: 17658854 [Abstract] [Full Text] [Related]
25. Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. Quezada-Calvillo R, Robayo-Torres CC, Ao Z, Hamaker BR, Quaroni A, Brayer GD, Sterchi EE, Baker SS, Nichols BL. J Pediatr Gastroenterol Nutr; 2007 Jul 17; 45(1):32-43. PubMed ID: 17592362 [Abstract] [Full Text] [Related]
26. Synthesis of sulfonium sulfate analogues of disaccharides and their conversion to chain-extended homologues of salacinol: new glycosidase inhibitors. Johnston BD, Jensen HH, Pinto BM. J Org Chem; 2006 Feb 03; 71(3):1111-8. PubMed ID: 16438529 [Abstract] [Full Text] [Related]
27. Contribution of the Individual Small Intestinal α-Glucosidases to Digestion of Unusual α-Linked Glycemic Disaccharides. Lee BH, Rose DR, Lin AH, Quezada-Calvillo R, Nichols BL, Hamaker BR. J Agric Food Chem; 2016 Aug 24; 64(33):6487-94. PubMed ID: 27480812 [Abstract] [Full Text] [Related]
28. Structure proof and synthesis of kotalanol and de-O-sulfonated kotalanol, glycosidase inhibitors isolated from an herbal remedy for the treatment of type-2 diabetes. Jayakanthan K, Mohan S, Pinto BM. J Am Chem Soc; 2009 Apr 22; 131(15):5621-6. PubMed ID: 19331410 [Abstract] [Full Text] [Related]
29. Synthesis of S-alkylated sulfonium-ions and their glucosidase inhibitory activities against recombinant human maltase glucoamylase. Mohan S, Sim L, Rose DR, Pinto BM. Carbohydr Res; 2007 May 21; 342(7):901-12. PubMed ID: 17316580 [Abstract] [Full Text] [Related]
30. Absolute stereostructure of potent alpha-glucosidase inhibitor, Salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. Yoshikawa M, Morikawa T, Matsuda H, Tanabe G, Muraoka O. Bioorg Med Chem; 2002 May 21; 10(5):1547-54. PubMed ID: 11886816 [Abstract] [Full Text] [Related]
31. Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulata. Yoshikawa M, Murakami T, Yashiro K, Matsuda H. Chem Pharm Bull (Tokyo); 1998 Aug 21; 46(8):1339-40. PubMed ID: 9734318 [Abstract] [Full Text] [Related]
32. A new class of glucosidase inhibitor: analogues of the naturally occurring glucosidase inhibitor salacinol with different ring heteroatom substituents and acyclic chain extension. Liu H, Sim L, Rose DR, Pinto BM. J Org Chem; 2006 Apr 14; 71(8):3007-13. PubMed ID: 16599595 [Abstract] [Full Text] [Related]
33. Improved Starch Digestion of Sucrase-deficient Shrews Treated With Oral Glucoamylase Enzyme Supplements. Nichols BL, Avery SE, Quezada-Calvillo R, Kilani SB, Lin AH, Burrin DG, Hodges BE, Chacko SK, Opekun AR, Hindawy ME, Hamaker BR, Oda SI. J Pediatr Gastroenterol Nutr; 2017 Aug 14; 65(2):e35-e42. PubMed ID: 28267073 [Abstract] [Full Text] [Related]
34. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR. J Biol Chem; 2010 Jun 04; 285(23):17763-70. PubMed ID: 20356844 [Abstract] [Full Text] [Related]
35. Probing the active-site requirements of human intestinal N-terminal maltase glucoamylase: the effect of replacing the sulfate moiety by a methyl ether in ponkoranol, a naturally occurring α-glucosidase inhibitor. Eskandari R, Jones K, Rose DR, Pinto BM. Bioorg Med Chem Lett; 2010 Oct 01; 20(19):5686-9. PubMed ID: 20801033 [Abstract] [Full Text] [Related]
36. Effect of five-membered sugar mimics on mammalian glycogen-degrading enzymes and various glucosidases. Minami Y, Kuriyama C, Ikeda K, Kato A, Takebayashi K, Adachi I, Fleet GW, Kettawan A, Okamoto T, Asano N. Bioorg Med Chem; 2008 Mar 15; 16(6):2734-40. PubMed ID: 18258441 [Abstract] [Full Text] [Related]
37. Interaction between the α-glucosidases, sucrase-isomaltase and maltase-glucoamylase, in human intestinal brush border membranes and its potential impact on disaccharide digestion. Tannous S, Stellbrinck T, Hoter A, Naim HY. Front Mol Biosci; 2023 Mar 15; 10():1160860. PubMed ID: 36968271 [Abstract] [Full Text] [Related]
38. Synthesis of analogues of salacinol containing a carboxylate inner salt and their inhibitory activities against human maltase glucoamylase. Chen W, Sim L, Rose DR, Pinto BM. Carbohydr Res; 2007 Sep 03; 342(12-13):1661-7. PubMed ID: 17597595 [Abstract] [Full Text] [Related]
39. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Xie W, Tanabe G, Matsuoka K, Amer MF, Minematsu T, Wu X, Yoshikawa M, Muraoka O. Bioorg Med Chem; 2011 Apr 01; 19(7):2252-62. PubMed ID: 21420866 [Abstract] [Full Text] [Related]
40. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential. Panwar H, Calderwood D, Grant IR, Grover S, Green BD. Eur J Nutr; 2014 Oct 01; 53(7):1465-74. PubMed ID: 24414142 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]