These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 23968726

  • 1. Global DNA methylation screening of liver in piperonyl butoxide-treated mice in a two-stage hepatocarcinogenesis model.
    Yafune A, Kawai M, Itahashi M, Kimura M, Nakane F, Mitsumori K, Shibutani M.
    Toxicol Lett; 2013 Oct 09; 222(3):295-302. PubMed ID: 23968726
    [Abstract] [Full Text] [Related]

  • 2. Mechanistic study on hepatocarcinogenesis of piperonyl butoxide in mice.
    Kawai M, Saegusa Y, Jin M, Dewa Y, Nishimura J, Harada T, Shibutani M, Mitsumori K.
    Toxicol Pathol; 2009 Oct 09; 37(6):761-9. PubMed ID: 19690152
    [Abstract] [Full Text] [Related]

  • 3. Threshold dose of piperonyl butoxide that induces reactive oxygen species-mediated hepatocarcinogenesis in rats.
    Muguruma M, Kawai M, Dewa Y, Nishimura J, Saegusa Y, Yasuno H, Jin M, Matsumoto S, Takabatake M, Arai K, Mitsumori K.
    Arch Toxicol; 2009 Feb 09; 83(2):183-93. PubMed ID: 18648771
    [Abstract] [Full Text] [Related]

  • 4. Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model.
    Hara S, Morita R, Ogawa T, Segawa R, Takimoto N, Suzuki K, Hamadate N, Hayashi SM, Odachi A, Ogiwara I, Shibusawa S, Yoshida T, Shibutani M.
    Exp Toxicol Pathol; 2014 Aug 09; 66(5-6):225-34. PubMed ID: 24680176
    [Abstract] [Full Text] [Related]

  • 5. Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats.
    Muguruma M, Unami A, Kanki M, Kuroiwa Y, Nishimura J, Dewa Y, Umemura T, Oishi Y, Mitsumori K.
    Toxicology; 2007 Jul 01; 236(1-2):61-75. PubMed ID: 17498859
    [Abstract] [Full Text] [Related]

  • 6. Elevation of cell proliferation via generation of reactive oxygen species by piperonyl butoxide contributes to its liver tumor-promoting effects in mice.
    Kawai M, Saegusa Y, Dewa Y, Nishimura J, Kemmochi S, Harada T, Ishii Y, Umemura T, Shibutani M, Mitsumori K.
    Arch Toxicol; 2010 Feb 01; 84(2):155-64. PubMed ID: 20101389
    [Abstract] [Full Text] [Related]

  • 7. Different pathways of constitutive androstane receptor-mediated liver hypertrophy and hepatocarcinogenesis in mice treated with piperonyl butoxide or decabromodiphenyl ether.
    Sakamoto Y, Inoue K, Takahashi M, Taketa Y, Kodama Y, Nemoto K, Degawa M, Gamou T, Ozawa S, Nishikawa A, Yoshida M.
    Toxicol Pathol; 2013 Feb 01; 41(8):1078-92. PubMed ID: 23531792
    [Abstract] [Full Text] [Related]

  • 8. Molecular pathological analysis for determining the possible mechanism of piperonyl butoxide-induced hepatocarcinogenesis in mice.
    Muguruma M, Nishimura J, Jin M, Kashida Y, Moto M, Takahashi M, Yokouchi Y, Mitsumori K.
    Toxicology; 2006 Dec 07; 228(2-3):178-87. PubMed ID: 17014948
    [Abstract] [Full Text] [Related]

  • 9. Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model.
    Abe H, Ogawa T, Wang L, Kimura M, Tanaka T, Morita R, Yoshida T, Shibutani M.
    Toxicol Appl Pharmacol; 2014 Nov 01; 280(3):467-74. PubMed ID: 25151969
    [Abstract] [Full Text] [Related]

  • 10. Piperonyl butoxide activates c-Jun and ATF-2 in the hepatocytes of mice.
    Muguruma M, Arai K, Moto M, Nishimura J, Dewa Y, Mitsumori K.
    Arch Toxicol; 2008 Oct 01; 82(10):749-53. PubMed ID: 18228000
    [Abstract] [Full Text] [Related]

  • 11. Piperonyl butoxide: Mode of action analysis for mouse liver tumour formation and human relevance.
    Lake BG, Price RJ, Scott MP, Chatham LR, Vardy A, Osimitz TG.
    Toxicology; 2020 Jun 01; 439():152465. PubMed ID: 32320717
    [Abstract] [Full Text] [Related]

  • 12. Involvement of multiple cell cycle aberrations in early preneoplastic liver cell lesions by tumor promotion with thioacetamide in a two-stage rat hepatocarcinogenesis model.
    Kimura M, Fujii Y, Yamamoto R, Yafune A, Hayashi SM, Suzuki K, Shibutani M.
    Exp Toxicol Pathol; 2013 Nov 01; 65(7-8):979-88. PubMed ID: 23474136
    [Abstract] [Full Text] [Related]

  • 13. Induction of GST-P-positive proliferative lesions facilitating lipid peroxidation with possible involvement of transferrin receptor up-regulation and ceruloplasmin down-regulation from the early stage of liver tumor promotion in rats.
    Mizukami S, Ichimura R, Kemmochi S, Taniai E, Shimamoto K, Ohishi T, Takahashi M, Mitsumori K, Shibutani M.
    Arch Toxicol; 2010 Apr 01; 84(4):319-31. PubMed ID: 20091025
    [Abstract] [Full Text] [Related]

  • 14. Identification of epigenetically downregulated Tmem70 and Ube2e2 in rat liver after 28-day treatment with hepatocarcinogenic thioacetamide showing gene product downregulation in hepatocellular preneoplastic and neoplastic lesions produced by tumor promotion.
    Mizukami S, Yafune A, Watanabe Y, Nakajima K, Jin M, Yoshida T, Shibutani M.
    Toxicol Lett; 2017 Jan 15; 266():13-22. PubMed ID: 27914986
    [Abstract] [Full Text] [Related]

  • 15. Chronic toxicity studies of piperonyl butoxide in CD-1 mice: induction of hepatocellular carcinoma.
    Takahashi O, Oishi S, Fujitani T, Tanaka T, Yoneyama M.
    Toxicology; 1997 Dec 26; 124(2):95-103. PubMed ID: 9457999
    [Abstract] [Full Text] [Related]

  • 16. Mechanistic study on liver tumor promoting effects of piperonyl butoxide in rats.
    Okamiya H, Mitsumori K, Onodera H, Ito S, Imazawa T, Yasuhara K, Takahashi M.
    Arch Toxicol; 1998 Nov 26; 72(11):744-50. PubMed ID: 9879813
    [Abstract] [Full Text] [Related]

  • 17. Hypomethylation of DNA and the insulin-like growth factor-II gene in dichloroacetic and trichloroacetic acid-promoted mouse liver tumors.
    Tao L, Li Y, Kramer PM, Wang W, Pereira MA.
    Toxicology; 2004 Mar 01; 196(1-2):127-36. PubMed ID: 15036762
    [Abstract] [Full Text] [Related]

  • 18. Modifying effect of Siraitia grosvenori extract on piperonyl butoxide-promoted hepatocarcinogenesis in rats.
    Yasuno H, Nishimura J, Dewa Y, Muguruma M, Takabatake M, Murata Y, Shibutani M, Mitsumori K.
    J Toxicol Sci; 2008 May 01; 33(2):197-207. PubMed ID: 18544911
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of in vivo liver genotoxic potential of Wy-14,643 and piperonyl butoxide in rats subjected to two-week repeated oral administration.
    Suzuki T, Jin M, Dewa Y, Ichimura R, Shimada Y, Mizukami S, Shibutani M, Mitsumori K.
    Arch Toxicol; 2010 Jun 01; 84(6):493-500. PubMed ID: 20127075
    [Abstract] [Full Text] [Related]

  • 20. Oxidative DNA damage and in vivo mutagenicity caused by reactive oxygen species generated in the livers of p53-proficient or -deficient gpt delta mice treated with non-genotoxic hepatocarcinogens.
    Tasaki M, Kuroiwa Y, Inoue T, Hibi D, Matsushita K, Ishii Y, Maruyama S, Nohmi T, Nishikawa A, Umemura T.
    J Appl Toxicol; 2013 Dec 01; 33(12):1433-41. PubMed ID: 22972318
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.