These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 2397226

  • 1. Biphasic voltage relaxation pattern observed in cells of Eremosphaera viridis after injection of charge-pulses of short duration: detection of tip clogging of intracellular microelectrodes by charge-pulse technique.
    Wehner G, Friedmann B, Zimmermann U.
    Biochim Biophys Acta; 1990 Aug 24; 1027(2):105-15. PubMed ID: 2397226
    [Abstract] [Full Text] [Related]

  • 2. Evidence for the presence of mobile charges in the cell membrane of Valonia utricularis.
    Benz R, Zimmermann U.
    Biophys J; 1983 Jul 24; 43(1):13-26. PubMed ID: 6882859
    [Abstract] [Full Text] [Related]

  • 3. Determination of the individual electrical and transport properties of the plasmalemma and the tonoplast of the giant marine alga Ventricaria ventricosa by means of the integrated perfusion/charge-pulse technique: evidence for a multifolded tonoplast.
    Ryser C, Wang J, Mimietz S, Zimmermann U.
    J Membr Biol; 1999 Mar 15; 168(2):183-97. PubMed ID: 10089238
    [Abstract] [Full Text] [Related]

  • 4. Separate determination of the electrical properties of the tonoplast and the plasmalemma of the giant-celled alga Valonia utricularis: vacuolar perfusion of turgescent cells with nystatin and other agents.
    Wang J, Spiess I, Ryser C, Zimmermann U.
    J Membr Biol; 1997 Jun 01; 157(3):311-21. PubMed ID: 9178617
    [Abstract] [Full Text] [Related]

  • 5. Coincident recording and stimulation of single and multiple neuronal activity with one extracellular microelectrode.
    Hentall ID.
    J Neurosci Methods; 1991 Dec 01; 40(2-3):181-91. PubMed ID: 1800855
    [Abstract] [Full Text] [Related]

  • 6. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study.
    Benz R, Beckers F, Zimmermann U.
    J Membr Biol; 1979 Jul 16; 48(2):181-204. PubMed ID: 480336
    [Abstract] [Full Text] [Related]

  • 7. Pulse-length dependence of the electrical breakdown in lipid bilayer membranes.
    Benz R, Zimmermann U.
    Biochim Biophys Acta; 1980 Apr 24; 597(3):637-42. PubMed ID: 7378404
    [Abstract] [Full Text] [Related]

  • 8. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures.
    Baranyi A, Szente MB, Woody CD.
    J Neurophysiol; 1993 Jun 24; 69(6):1865-79. PubMed ID: 8350127
    [Abstract] [Full Text] [Related]

  • 9. Membrane properties of nociceptive neurones in lamina II of lumbar spinal cord in the cat.
    Iggo A, Molony V, Steedman WM.
    J Physiol; 1988 Jun 24; 400():367-80. PubMed ID: 3418530
    [Abstract] [Full Text] [Related]

  • 10. The interpretation of current-voltage relations recorded from a spherical cell with a single microelectrode.
    Engel E, Barcilon V, Eisenberg RS.
    Biophys J; 1972 Apr 24; 12(4):384-403. PubMed ID: 5019477
    [Abstract] [Full Text] [Related]

  • 11. Electrical properties of Valonia ventricosa.
    Lainson R, Field CD.
    J Membr Biol; 1976 Oct 20; 29(1-2):81-94. PubMed ID: 978719
    [Abstract] [Full Text] [Related]

  • 12. Theory and operation of a single microelectrode voltage clamp.
    Finkel AS, Redman S.
    J Neurosci Methods; 1984 Jun 20; 11(2):101-27. PubMed ID: 6482502
    [Abstract] [Full Text] [Related]

  • 13. Mobile charges in the cell membranes ofHalicystis parvula.
    Benz R, Büchner KH, Zimmermann U.
    Planta; 1988 Dec 20; 174(4):479-87. PubMed ID: 24221563
    [Abstract] [Full Text] [Related]

  • 14. An examination of frog myelinated axons using intracellular microelectrode recording: the role of voltage-dependent and leak conductances on the steady-state electrical properties.
    Poulter MO, Hashiguchi T, Padjen AL.
    J Neurophysiol; 1993 Dec 20; 70(6):2301-12. PubMed ID: 7509856
    [Abstract] [Full Text] [Related]

  • 15. A new electrical method for the determination of the cell membrane area in plant cells.
    Zimmermann U, Benz R, Koch H.
    Planta; 1981 Jul 20; 152(4):352-5. PubMed ID: 24301031
    [Abstract] [Full Text] [Related]

  • 16. Sampling membrane potential, membrane resistance and electrode resistance with a glass electrode impaled into a single cell.
    Schiebe M, Jaeger U.
    J Neurosci Methods; 1980 Apr 20; 2(2):191-202. PubMed ID: 7392671
    [Abstract] [Full Text] [Related]

  • 17. Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings.
    Staley KJ, Otis TS, Mody I.
    J Neurophysiol; 1992 May 20; 67(5):1346-58. PubMed ID: 1597717
    [Abstract] [Full Text] [Related]

  • 18. Microelectrode studies of Necturus antral mucosa. II. Equivalent circuit analysis.
    Ashley SW, Soybel DI, De L, Cheung LY.
    Am J Physiol; 1985 May 20; 248(5 Pt 1):G574-9. PubMed ID: 3993785
    [Abstract] [Full Text] [Related]

  • 19. Study of the inhibitor of the crayfish neuromuscular junction by presynaptic voltage control.
    Vyshedskiy A, Lin JW.
    J Neurophysiol; 1997 Jan 20; 77(1):103-15. PubMed ID: 9120551
    [Abstract] [Full Text] [Related]

  • 20. Membrane charge moved at contraction thresholds in skeletal muscle fibres.
    Horowicz P, Schneider MF.
    J Physiol; 1981 May 20; 314():595-633. PubMed ID: 6975815
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.