These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


592 related items for PubMed ID: 23974161

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes.
    Gong X, Li J, Zhou W, Xiang Y, Yuan R, Chai Y.
    Anal Chim Acta; 2014 May 30; 828():80-4. PubMed ID: 24845818
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A label-free fluorescence assay for thrombin based on aptamer exonuclease protection and exonuclease III-assisted recycling amplification-responsive cascade zinc(II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent labels.
    Lv Y, Xue Q, Gu X, Zhang S, Liu J.
    Analyst; 2014 May 21; 139(10):2583-8. PubMed ID: 24707508
    [Abstract] [Full Text] [Related]

  • 9. Label-free and rapid detection of ATP based on structure switching of aptamers.
    Ji D, Wang H, Ge J, Zhang L, Li J, Bai D, Chen J, Li Z.
    Anal Biochem; 2017 Jun 01; 526():22-28. PubMed ID: 28315316
    [Abstract] [Full Text] [Related]

  • 10. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification.
    Qiang W, Wang X, Li W, Chen X, Li H, Xu D.
    Biosens Bioelectron; 2015 Sep 15; 71():143-149. PubMed ID: 25897884
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling.
    Liu S, Wang Y, Zhang C, Lin Y, Li F.
    Chem Commun (Camb); 2013 Mar 21; 49(23):2335-7. PubMed ID: 23403496
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Coupling strand extension/excision amplification with target recycling enables highly sensitive and aptamer-based label-free sensing of ATP in human serum.
    Xu L, Jiang B, Zhou W, Yuan R, Xiang Y.
    Analyst; 2020 Jan 21; 145(2):434-439. PubMed ID: 31793560
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Fluorescence aptameric sensor for isothermal circular strand-displacement polymerization amplification detection of adenosine triphosphate.
    Song W, Zhang Q, Xie X, Zhang S.
    Biosens Bioelectron; 2014 Nov 15; 61():51-6. PubMed ID: 24851721
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.
    Wei Y, Chen Y, Li H, Shuang S, Dong C, Wang G.
    Biosens Bioelectron; 2015 Jan 15; 63():311-316. PubMed ID: 25113049
    [Abstract] [Full Text] [Related]

  • 19. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.
    Hou T, Li W, Zhang L, Li F.
    Analyst; 2015 Aug 21; 140(16):5748-53. PubMed ID: 26165638
    [Abstract] [Full Text] [Related]

  • 20. ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene.
    Wang Y, Liu B.
    Analyst; 2008 Nov 21; 133(11):1593-8. PubMed ID: 18936838
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.