These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 23975680

  • 1. Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.
    Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Chai Y.
    Hum Mol Genet; 2014 Jan 01; 23(1):182-93. PubMed ID: 23975680
    [Abstract] [Full Text] [Related]

  • 2. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.
    Pelikan RC, Iwata J, Suzuki A, Chai Y, Hacia JG.
    J Cell Biochem; 2013 Apr 01; 114(4):796-807. PubMed ID: 23060211
    [Abstract] [Full Text] [Related]

  • 3. Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice.
    Iwata J, Hacia JG, Suzuki A, Sanchez-Lara PA, Urata M, Chai Y.
    J Clin Invest; 2012 Mar 01; 122(3):873-85. PubMed ID: 22326956
    [Abstract] [Full Text] [Related]

  • 4. CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development.
    Parada C, Li J, Iwata J, Suzuki A, Chai Y.
    Mol Cell Biol; 2013 Sep 01; 33(17):3482-93. PubMed ID: 23816882
    [Abstract] [Full Text] [Related]

  • 5. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, Shuler CF, Moses HL, Chai Y.
    Development; 2003 Nov 01; 130(21):5269-80. PubMed ID: 12975342
    [Abstract] [Full Text] [Related]

  • 6. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y.
    J Biol Chem; 2012 Jan 20; 287(4):2353-63. PubMed ID: 22123828
    [Abstract] [Full Text] [Related]

  • 7. Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.
    Iwata J, Suzuki A, Pelikan RC, Ho TV, Chai Y.
    J Biol Chem; 2013 Oct 11; 288(41):29760-70. PubMed ID: 23950180
    [Abstract] [Full Text] [Related]

  • 8. Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice.
    Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Urata M, Dixon MJ, Chai Y.
    Development; 2013 Mar 11; 140(6):1220-30. PubMed ID: 23406900
    [Abstract] [Full Text] [Related]

  • 9. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.
    Iwata J, Suzuki A, Yokota T, Ho TV, Pelikan R, Urata M, Sanchez-Lara PA, Chai Y.
    Development; 2014 Feb 11; 141(4):909-17. PubMed ID: 24496627
    [Abstract] [Full Text] [Related]

  • 10. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.
    Song Z, Liu C, Iwata J, Gu S, Suzuki A, Sun C, He W, Shu R, Li L, Chai Y, Chen Y.
    J Biol Chem; 2013 Apr 12; 288(15):10440-50. PubMed ID: 23460641
    [Abstract] [Full Text] [Related]

  • 11. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X, Han J, Ito Y, Bringas P, Urata MM, Chai Y.
    Dev Biol; 2006 Sep 01; 297(1):238-48. PubMed ID: 16780827
    [Abstract] [Full Text] [Related]

  • 12. Tgfbeta signaling directly induces Arf promoter remodeling by a mechanism involving Smads 2/3 and p38 MAPK.
    Zheng Y, Zhao YD, Gibbons M, Abramova T, Chu PY, Ash JD, Cunningham JM, Skapek SX.
    J Biol Chem; 2010 Nov 12; 285(46):35654-64. PubMed ID: 20826783
    [Abstract] [Full Text] [Related]

  • 13. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.
    Ho TV, Iwata J, Ho HA, Grimes WC, Park S, Sanchez-Lara PA, Chai Y.
    Dev Biol; 2015 Apr 15; 400(2):180-90. PubMed ID: 25722190
    [Abstract] [Full Text] [Related]

  • 14. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells.
    Yumoto K, Thomas PS, Lane J, Matsuzaki K, Inagaki M, Ninomiya-Tsuji J, Scott GJ, Ray MK, Ishii M, Maxson R, Mishina Y, Kaartinen V.
    J Biol Chem; 2013 May 10; 288(19):13467-80. PubMed ID: 23546880
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Transforming Growth Factor β Signaling in Colorectal Cancer Cells With Microsatellite Instability Despite Biallelic Mutations in TGFBR2.
    de Miranda NF, van Dinther M, van den Akker BE, van Wezel T, ten Dijke P, Morreau H.
    Gastroenterology; 2015 Jun 10; 148(7):1427-37.e8. PubMed ID: 25736321
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells.
    Iwata J, Hosokawa R, Sanchez-Lara PA, Urata M, Slavkin H, Chai Y.
    J Biol Chem; 2010 Feb 12; 285(7):4975-82. PubMed ID: 19959467
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.