These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. P. aeruginosa Induced Lipid Peroxidation Causes Ferroptotic Cell Death in Airways. Ousingsawat J, Schreiber R, Gulbins E, Kamler M, Kunzelmann K. Cell Physiol Biochem; 2021 Oct 13; 55(5):590-604. PubMed ID: 34637202 [Abstract] [Full Text] [Related]
9. CF monocyte-derived macrophages have an attenuated response to extracellular vesicles secreted by airway epithelial cells. Koeppen K, Nymon A, Barnaby R, Li Z, Hampton TH, Ashare A, Stanton BA. Am J Physiol Lung Cell Mol Physiol; 2021 Apr 01; 320(4):L530-L544. PubMed ID: 33471607 [Abstract] [Full Text] [Related]
10. Loss of cystic fibrosis transmembrane conductance regulator function enhances activation of p38 and ERK MAPKs, increasing interleukin-6 synthesis in airway epithelial cells exposed to Pseudomonas aeruginosa. Bérubé J, Roussel L, Nattagh L, Rousseau S. J Biol Chem; 2010 Jul 16; 285(29):22299-307. PubMed ID: 20460375 [Abstract] [Full Text] [Related]
11. Optimal complement-mediated phagocytosis of Pseudomonas aeruginosa by monocytes is cystic fibrosis transmembrane conductance regulator-dependent. Van de Weert-van Leeuwen PB, Van Meegen MA, Speirs JJ, Pals DJ, Rooijakkers SH, Van der Ent CK, Terheggen-Lagro SW, Arets HG, Beekman JM. Am J Respir Cell Mol Biol; 2013 Sep 16; 49(3):463-70. PubMed ID: 23617438 [Abstract] [Full Text] [Related]
12. Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. Scheid P, Kempster L, Griesenbach U, Davies JC, Dewar A, Weber PP, Colledge WH, Evans MJ, Geddes DM, Alton EW. Eur Respir J; 2001 Jan 16; 17(1):27-35. PubMed ID: 11307750 [Abstract] [Full Text] [Related]
13. Altered iron metabolism in cystic fibrosis macrophages: the impact of CFTR modulators and implications for Pseudomonas aeruginosa survival. Hazlett HF, Hampton TH, Aridgides DS, Armstrong DA, Dessaint JA, Mellinger DL, Nymon AB, Ashare A. Sci Rep; 2020 Jul 02; 10(1):10935. PubMed ID: 32616918 [Abstract] [Full Text] [Related]
14. Liposomes Loaded With Phosphatidylinositol 5-Phosphate Improve the Antimicrobial Response to Pseudomonas aeruginosa in Impaired Macrophages From Cystic Fibrosis Patients and Limit Airway Inflammatory Response. Poerio N, De Santis F, Rossi A, Ranucci S, De Fino I, Henriquez A, D'Andrea MM, Ciciriello F, Lucidi V, Nisini R, Bragonzi A, Fraziano M. Front Immunol; 2020 Jul 02; 11():532225. PubMed ID: 33117337 [Abstract] [Full Text] [Related]
15. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection. Singh S, Barr H, Liu YC, Robins A, Heeb S, Williams P, Fogarty A, Cámara M, Martínez-Pomares L. PLoS One; 2015 Jul 02; 10(2):e0117447. PubMed ID: 25706389 [Abstract] [Full Text] [Related]
16. Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa. Del Porto P, Cifani N, Guarnieri S, Di Domenico EG, Mariggiò MA, Spadaro F, Guglietta S, Anile M, Venuta F, Quattrucci S, Ascenzioni F. PLoS One; 2011 Jul 02; 6(5):e19970. PubMed ID: 21625641 [Abstract] [Full Text] [Related]
17. Transgenic cystic fibrosis mice exhibit reduced early clearance of Pseudomonas aeruginosa from the respiratory tract. Schroeder TH, Reiniger N, Meluleni G, Grout M, Coleman FT, Pier GB. J Immunol; 2001 Jun 15; 166(12):7410-8. PubMed ID: 11390493 [Abstract] [Full Text] [Related]
18. Low levels of insulin-like growth factor-1 contribute to alveolar macrophage dysfunction in cystic fibrosis. Bessich JL, Nymon AB, Moulton LA, Dorman D, Ashare A. J Immunol; 2013 Jul 01; 191(1):378-85. PubMed ID: 23698746 [Abstract] [Full Text] [Related]
19. Innate lung defenses and compromised Pseudomonas aeruginosa clearance in the malnourished mouse model of respiratory infections in cystic fibrosis. Yu H, Nasr SZ, Deretic V. Infect Immun; 2000 Apr 01; 68(4):2142-7. PubMed ID: 10722612 [Abstract] [Full Text] [Related]