These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 23979481

  • 1. Human body parts tracking and kinematic features assessment based on RSSI and inertial sensor measurements.
    Blumrosen G, Luttwak A.
    Sensors (Basel); 2013 Aug 23; 13(9):11289-313. PubMed ID: 23979481
    [Abstract] [Full Text] [Related]

  • 2. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM, Kirsch RF.
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov 23; 22(6):1138-47. PubMed ID: 24846651
    [Abstract] [Full Text] [Related]

  • 3. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait.
    Kugler P, Schlarb H, Blinn J, Picard A, Eskofier B.
    Annu Int Conf IEEE Eng Med Biol Soc; 2012 Nov 23; 2012():4537-40. PubMed ID: 23366937
    [Abstract] [Full Text] [Related]

  • 4. Miniature wireless inertial sensor for measuring human motions.
    van Acht V, Bongers E, Lambert N, Verberne R.
    Annu Int Conf IEEE Eng Med Biol Soc; 2007 Nov 23; 2007():6279-82. PubMed ID: 18003456
    [Abstract] [Full Text] [Related]

  • 5. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A, Salarieh H, Alasty A.
    J Biomech Eng; 2016 Sep 01; 138(9):. PubMed ID: 27428461
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors.
    Bai L, Pepper MG, Yan Y, Spurgeon SK, Sakel M, Phillips M.
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar 01; 23(2):232-43. PubMed ID: 25420266
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A wearable system for pre-impact fall detection.
    Nyan MN, Tay FE, Murugasu E.
    J Biomech; 2008 Dec 05; 41(16):3475-81. PubMed ID: 18996529
    [Abstract] [Full Text] [Related]

  • 13. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K, Boissy P, Nguyen H, Duval C.
    Biomed Eng Online; 2017 May 15; 16(1):56. PubMed ID: 28506273
    [Abstract] [Full Text] [Related]

  • 14. Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor.
    Tolkiehn M, Atallah L, Lo B, Yang GZ.
    Annu Int Conf IEEE Eng Med Biol Soc; 2011 May 15; 2011():369-72. PubMed ID: 22254325
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Wearable systems with minimal set-up for monitoring and training of balance and mobility.
    Chiari L.
    Annu Int Conf IEEE Eng Med Biol Soc; 2011 May 15; 2011():5828-32. PubMed ID: 22255665
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. A prototype wireless inertial-sensing device for measuring toe clearance.
    Lai DT, Charry E, Begg R, Palaniswami M.
    Annu Int Conf IEEE Eng Med Biol Soc; 2008 May 15; 2008():4899-902. PubMed ID: 19163815
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.