These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 23979758
1. Azole resistance in Cryptococcus gattii from the Pacific Northwest: Investigation of the role of ERG11. Gast CE, Basso LR, Bruzual I, Wong B. Antimicrob Agents Chemother; 2013 Nov; 57(11):5478-85. PubMed ID: 23979758 [Abstract] [Full Text] [Related]
2. Identification and properties of plasma membrane azole efflux pumps from the pathogenic fungi Cryptococcus gattii and Cryptococcus neoformans. Basso LR, Gast CE, Bruzual I, Wong B. J Antimicrob Chemother; 2015 May; 70(5):1396-407. PubMed ID: 25630649 [Abstract] [Full Text] [Related]
3. Reduced Susceptibility to Azoles in Cryptococcus gattii Correlates with the Substitution R258L in a Substrate Recognition Site of the Lanosterol 14-α-Demethylase. Carvajal SK, Melendres J, Escandón P, Firacative C. Microbiol Spectr; 2023 Aug 17; 11(4):e0140323. PubMed ID: 37341584 [Abstract] [Full Text] [Related]
4. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus neoformans and Cryptococcus gattii. Lockhart SR, Fothergill AW, Iqbal N, Bolden CB, Grossman NT, Garvey EP, Brand SR, Hoekstra WJ, Schotzinger RJ, Ottinger E, Patterson TF, Wiederhold NP. Antimicrob Agents Chemother; 2016 Apr 17; 60(4):2528-31. PubMed ID: 26787697 [Abstract] [Full Text] [Related]
8. Amino acid substitution in Cryptococcus neoformans lanosterol 14-α-demethylase involved in fluconazole resistance in clinical isolates. Bosco-Borgeat ME, Mazza M, Taverna CG, Córdoba S, Murisengo OA, Vivot W, Davel G. Rev Argent Microbiol; 2016 Apr 17; 48(2):137-42. PubMed ID: 27311753 [Abstract] [Full Text] [Related]
9. Roles of Three Cryptococcus neoformans and Cryptococcus gattii Efflux Pump-Coding Genes in Response to Drug Treatment. Chang M, Sionov E, Khanal Lamichhane A, Kwon-Chung KJ, Chang YC. Antimicrob Agents Chemother; 2018 Apr 17; 62(4):. PubMed ID: 29378705 [Abstract] [Full Text] [Related]
10. Comparative antifungal susceptibility analyses of Cryptococcus neoformans VNI and Cryptococcus gattii VGII from the Brazilian Amazon Region by the Etest, Vitek 2, and the Clinical and Laboratory Standards Institute broth microdilution methods. Nishikawa MM, Almeida-Paes R, Brito-Santos F, Nascimento CR, Fialho MM, Trilles L, Morales BP, da Silva SA, Santos W, Santos LO, Fortes ST, Cardarelli-Leite P, Lázera MDS. Med Mycol; 2019 Oct 01; 57(7):864-873. PubMed ID: 30657975 [Abstract] [Full Text] [Related]
11. In vitro susceptibility of the yeast pathogen cryptococcus to fluconazole and other azoles varies with molecular genotype. Chong HS, Dagg R, Malik R, Chen S, Carter D. J Clin Microbiol; 2010 Nov 01; 48(11):4115-20. PubMed ID: 20844209 [Abstract] [Full Text] [Related]
13. First Isolation of Azole-Resistant Cryptococcus neoformans from Feline Cryptococcosis. Kano R, Okubo M, Yanai T, Hasegawa A, Kamata H. Mycopathologia; 2015 Dec 01; 180(5-6):427-33. PubMed ID: 26162642 [Abstract] [Full Text] [Related]
16. In vivo development of fluconazole resistance in serial Cryptococcus gattii isolates from a cat. Sykes JE, Hodge G, Singapuri A, Yang ML, Gelli A, Thompson GR. Med Mycol; 2017 Jun 01; 55(4):396-401. PubMed ID: 28339594 [Abstract] [Full Text] [Related]
19. Molecular types of Cryptococcus neoformans and Cryptococcus gattii in Western Australia and correlation with antifungal susceptibility. Lee GA, Arthur I, Merritt A, Leung M. Med Mycol; 2019 Nov 01; 57(8):1004-1010. PubMed ID: 30649538 [Abstract] [Full Text] [Related]