These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
507 related items for PubMed ID: 23985796
41. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Qaddare SH, Salimi A. Biosens Bioelectron; 2017 Mar 15; 89(Pt 2):773-780. PubMed ID: 27816581 [Abstract] [Full Text] [Related]
42. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Xiao K, Liu J, Chen H, Zhang S, Kong J. Biosens Bioelectron; 2017 May 15; 91():76-81. PubMed ID: 27992802 [Abstract] [Full Text] [Related]
43. Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide. Alonso-Cristobal P, Vilela P, El-Sagheer A, Lopez-Cabarcos E, Brown T, Muskens OL, Rubio-Retama J, Kanaras AG. ACS Appl Mater Interfaces; 2015 Jun 17; 7(23):12422-9. PubMed ID: 25622622 [Abstract] [Full Text] [Related]
44. Label-free triple-helix aptamer as sensing platform for "signal-on" fluorescent detection of thrombin. Xu N, Wang Q, Lei J, Liu L, Ju H. Talanta; 2015 Jan 17; 132():387-91. PubMed ID: 25476322 [Abstract] [Full Text] [Related]
45. Aptasensor for amplified IgE sensing based on fluorescence quenching by graphene oxide. Hu K, Yang H, Zhou J, Zhao S, Tian J. Luminescence; 2013 Jan 17; 28(5):662-6. PubMed ID: 22949376 [Abstract] [Full Text] [Related]
46. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Ma L, Guo T, Pan S, Zhang Y. Mikrochim Acta; 2018 Oct 01; 185(10):487. PubMed ID: 30276550 [Abstract] [Full Text] [Related]
47. Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites. Shangguan L, Zhu W, Xue Y, Liu S. Biosens Bioelectron; 2015 Feb 15; 64():611-7. PubMed ID: 25314620 [Abstract] [Full Text] [Related]
48. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. Zhou ZM, Zhou J, Chen J, Yu RN, Zhang MZ, Song JT, Zhao YD. Biosens Bioelectron; 2014 Sep 15; 59():397-403. PubMed ID: 24768819 [Abstract] [Full Text] [Related]
49. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Youn H, Lee K, Her J, Jeon J, Mok J, So JI, Shin S, Ban C. Sci Rep; 2019 May 21; 9(1):7659. PubMed ID: 31114011 [Abstract] [Full Text] [Related]
50. A sensitive nanoporous gold-based electrochemical aptasensor for thrombin detection. Qiu H, Sun Y, Huang X, Qu Y. Colloids Surf B Biointerfaces; 2010 Aug 01; 79(1):304-8. PubMed ID: 20452755 [Abstract] [Full Text] [Related]
51. Sensitive electrochemical aptasensor for thrombin detection based on graphene served as platform and graphene oxide as enhancer. He C, Xu Z, Sun T, Wang L. Appl Biochem Biotechnol; 2014 Jan 01; 172(2):1018-26. PubMed ID: 24142359 [Abstract] [Full Text] [Related]
54. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Arvand M, Mirroshandel AA. Food Chem; 2019 May 15; 280():115-122. PubMed ID: 30642476 [Abstract] [Full Text] [Related]
57. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Dong H, Gao W, Yan F, Ji H, Ju H. Anal Chem; 2010 Jul 01; 82(13):5511-7. PubMed ID: 20524633 [Abstract] [Full Text] [Related]
58. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. Tang Q, Su X, Loh KP. J Colloid Interface Sci; 2007 Nov 01; 315(1):99-106. PubMed ID: 17689549 [Abstract] [Full Text] [Related]