These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 23991937

  • 21. Gliding arc plasma processing of CO2 conversion.
    Indarto A, Yang DR, Choi JW, Lee H, Song HK.
    J Hazard Mater; 2007 Jul 19; 146(1-2):309-15. PubMed ID: 17223261
    [Abstract] [Full Text] [Related]

  • 22. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops.
    Abanades JC, Murillo R, Fernandez JR, Grasa G, Martínez I.
    Environ Sci Technol; 2010 Sep 01; 44(17):6901-4. PubMed ID: 20704282
    [Abstract] [Full Text] [Related]

  • 23. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor.
    Dou B, Song Y, Liu Y, Feng C.
    J Hazard Mater; 2010 Nov 15; 183(1-3):759-65. PubMed ID: 20724072
    [Abstract] [Full Text] [Related]

  • 24. Development of a hybrid photo-bioreactor and nanoparticle adsorbent system for the removal of CO2, and selected organic and metal co-pollutants.
    Rocha AA, Wilde C, Hu Z, Nepotchatykh O, Nazarenko Y, Ariya PA.
    J Environ Sci (China); 2017 Jul 15; 57():41-53. PubMed ID: 28647262
    [Abstract] [Full Text] [Related]

  • 25. Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO2 Capture.
    Yan F, Jiang J, Li K, Liu N, Chen X, Gao Y, Tian S.
    Environ Sci Technol; 2017 Jul 05; 51(13):7606-7615. PubMed ID: 28585813
    [Abstract] [Full Text] [Related]

  • 26. The thief process for mercury removal from flue gas.
    Granite EJ, Freeman MC, Hargis RA, O'Dowd WJ, Pennline HW.
    J Environ Manage; 2007 Sep 05; 84(4):628-34. PubMed ID: 16959396
    [Abstract] [Full Text] [Related]

  • 27. Influence of the operation conditions on CO2 capture by CaO-derived sorbents prepared from synthetic CaCO3.
    Nieto-Sanchez AJ, Olivares-Marin M, Garcia S, Pevida C, Cuerda-Correa EM.
    Chemosphere; 2013 Nov 05; 93(9):2148-58. PubMed ID: 24035693
    [Abstract] [Full Text] [Related]

  • 28. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture.
    Liu W, Low NW, Feng B, Wang G, Diniz da Costa JC.
    Environ Sci Technol; 2010 Jan 15; 44(2):841-7. PubMed ID: 20030311
    [Abstract] [Full Text] [Related]

  • 29. Cost structure of a postcombustion CO2 capture system using CaO.
    Abanades JC, Grasa G, Alonso M, Rodriguez N, Anthony EJ, Romeo LM.
    Environ Sci Technol; 2007 Aug 01; 41(15):5523-7. PubMed ID: 17822127
    [Abstract] [Full Text] [Related]

  • 30. CO2 adsorption on chemically modified activated carbon.
    Caglayan BS, Aksoylu AE.
    J Hazard Mater; 2013 May 15; 252-253():19-28. PubMed ID: 23500788
    [Abstract] [Full Text] [Related]

  • 31. Mechanical activation of CaO-based adsorbents for CO(2) capture.
    Sayyah M, Lu Y, Masel RI, Suslick KS.
    ChemSusChem; 2013 Jan 15; 6(1):193-8. PubMed ID: 23132751
    [Abstract] [Full Text] [Related]

  • 32. Carbon dioxide sorption capacities of coal gasification residues.
    Kempka T, Fernández-Steeger T, Li DY, Schulten M, Schlüter R, Krooss BM.
    Environ Sci Technol; 2011 Feb 15; 45(4):1719-23. PubMed ID: 21210659
    [Abstract] [Full Text] [Related]

  • 33. Mercury control costs drop.
    Cooney CM.
    Environ Sci Technol; 2007 Feb 15; 41(4):1061-2. PubMed ID: 17593698
    [No Abstract] [Full Text] [Related]

  • 34. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.
    Zhang J, Webley PA.
    Environ Sci Technol; 2008 Jan 15; 42(2):563-9. PubMed ID: 18284163
    [Abstract] [Full Text] [Related]

  • 35. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge.
    Wilcox J, Haghpanah R, Rupp EC, He J, Lee K.
    Annu Rev Chem Biomol Eng; 2014 Jan 15; 5():479-505. PubMed ID: 24702296
    [Abstract] [Full Text] [Related]

  • 36. Thermal Integration of a Flexible Calcium Looping CO2 Capture System in an Existing Back-Up Coal Power Plant.
    Arias B, Criado YA, Abanades JC.
    ACS Omega; 2020 Mar 17; 5(10):4844-4852. PubMed ID: 32201770
    [Abstract] [Full Text] [Related]

  • 37. Relevant influence of limestone crystallinity on CO₂ capture in the Ca-looping technology at realistic calcination conditions.
    Valverde JM, Sanchez-Jimenez PE, Perez-Maqueda LA.
    Environ Sci Technol; 2014 Aug 19; 48(16):9882-9. PubMed ID: 25029532
    [Abstract] [Full Text] [Related]

  • 38. Energy and exergy analyses of an integrated gasification combined cycle power plant with CO2 capture using hot potassium carbonate solvent.
    Li S, Jin H, Gao L, Mumford KA, Smith K, Stevens G.
    Environ Sci Technol; 2014 Dec 16; 48(24):14814-21. PubMed ID: 25389800
    [Abstract] [Full Text] [Related]

  • 39. Enhanced stability and CO2 affinity of a UiO-66 type metal-organic framework decorated with dimethyl groups.
    Huang Y, Qin W, Li Z, Li Y.
    Dalton Trans; 2012 Aug 21; 41(31):9283-5. PubMed ID: 22763859
    [Abstract] [Full Text] [Related]

  • 40. Characterization of mercury binding onto a novel brominated biomass ash sorbent by X-ray absorption spectroscopy.
    Bisson TM, MacLean LC, Hu Y, Xu Z.
    Environ Sci Technol; 2012 Nov 06; 46(21):12186-93. PubMed ID: 23020596
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.