These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


313 related items for PubMed ID: 23996891

  • 1. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E, Rao S, Zydney AL.
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [Abstract] [Full Text] [Related]

  • 2. Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.
    Binabaji E, Ma J, Zydney AL.
    Pharm Res; 2015 Sep; 32(9):3102-9. PubMed ID: 25832501
    [Abstract] [Full Text] [Related]

  • 3. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW, Rodgers VG.
    Biophys Chem; 2013 Dec 31; 184():79-86. PubMed ID: 24141326
    [Abstract] [Full Text] [Related]

  • 4. Solution pH that minimizes self-association of three monoclonal antibodies is strongly dependent on ionic strength.
    Sule SV, Cheung JK, Antochshuk V, Bhalla AS, Narasimhan C, Blaisdell S, Shameem M, Tessier PM.
    Mol Pharm; 2012 Apr 02; 9(4):744-51. PubMed ID: 22221144
    [Abstract] [Full Text] [Related]

  • 5. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies.
    Singh P, Roche A, van der Walle CF, Uddin S, Du J, Warwicker J, Pluen A, Curtis R.
    Mol Pharm; 2019 Dec 02; 16(12):4775-4786. PubMed ID: 31613625
    [Abstract] [Full Text] [Related]

  • 6. The role of electrostatics in protein-protein interactions of a monoclonal antibody.
    Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, Curtis R.
    Mol Pharm; 2014 Jul 07; 11(7):2475-89. PubMed ID: 24892385
    [Abstract] [Full Text] [Related]

  • 7. Predicting Protein-Protein Interactions of Concentrated Antibody Solutions Using Dilute Solution Data and Coarse-Grained Molecular Models.
    Calero-Rubio C, Ghosh R, Saluja A, Roberts CJ.
    J Pharm Sci; 2018 May 07; 107(5):1269-1281. PubMed ID: 29274822
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Studying Excipient Modulated Physical Stability and Viscosity of Monoclonal Antibody Formulations Using Small-Angle Scattering.
    Xu AY, Castellanos MM, Mattison K, Krueger S, Curtis JE.
    Mol Pharm; 2019 Oct 07; 16(10):4319-4338. PubMed ID: 31487466
    [Abstract] [Full Text] [Related]

  • 11. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies?
    Woldeyes MA, Qi W, Razinkov VI, Furst EM, Roberts CJ.
    J Pharm Sci; 2019 Jan 07; 108(1):142-154. PubMed ID: 30017887
    [Abstract] [Full Text] [Related]

  • 12. Colloidal interactions between monoclonal antibodies in aqueous solutions.
    Arzenšek D, Kuzman D, Podgornik R.
    J Colloid Interface Sci; 2012 Oct 15; 384(1):207-16. PubMed ID: 22840854
    [Abstract] [Full Text] [Related]

  • 13. Effects of Histidine and Sucrose on the Biophysical Properties of a Monoclonal Antibody.
    Baek Y, Singh N, Arunkumar A, Zydney AL.
    Pharm Res; 2017 Mar 15; 34(3):629-639. PubMed ID: 28035628
    [Abstract] [Full Text] [Related]

  • 14. Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization.
    Le Brun V, Friess W, Schultz-Fademrecht T, Muehlau S, Garidel P.
    Biotechnol J; 2009 Sep 15; 4(9):1305-19. PubMed ID: 19579219
    [Abstract] [Full Text] [Related]

  • 15. Correlation of diafiltration sieving behavior of lysozyme-BSA mixtures with osmotic second virial cross-coefficients.
    Tessier PM, Verruto VJ, Sandler SI, Lenhoff AM.
    Biotechnol Bioeng; 2004 Aug 05; 87(3):303-10. PubMed ID: 15281105
    [Abstract] [Full Text] [Related]

  • 16. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions.
    Calero-Rubio C, Saluja A, Sahin E, Roberts CJ.
    J Phys Chem B; 2019 Jul 11; 123(27):5709-5720. PubMed ID: 31241333
    [Abstract] [Full Text] [Related]

  • 17. Cosolute effects on the chemical potential and interactions of an IgG1 monoclonal antibody at high concentrations.
    Scherer TM.
    J Phys Chem B; 2013 Feb 28; 117(8):2254-66. PubMed ID: 23330570
    [Abstract] [Full Text] [Related]

  • 18. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - prediction of viscosity through protein-protein interaction measurements.
    Neergaard MS, Kalonia DS, Parshad H, Nielsen AD, Møller EH, van de Weert M.
    Eur J Pharm Sci; 2013 Jun 14; 49(3):400-10. PubMed ID: 23624326
    [Abstract] [Full Text] [Related]

  • 19. Assessment of net charge and protein-protein interactions of different monoclonal antibodies.
    Lehermayr C, Mahler HC, Mäder K, Fischer S.
    J Pharm Sci; 2011 Jul 14; 100(7):2551-62. PubMed ID: 21294130
    [Abstract] [Full Text] [Related]

  • 20. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.
    Ma Y, Acosta DM, Whitney JR, Podgornik R, Steinmetz NF, French RH, Parsegian VA.
    J Biol Phys; 2015 Jan 14; 41(1):85-97. PubMed ID: 25403822
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.