These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 23998335
1. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. Bao H, Zhang L, Chen G. J Chromatogr A; 2013 Oct 04; 1310():74-81. PubMed ID: 23998335 [Abstract] [Full Text] [Related]
2. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping. Fan H, Yao F, Xu S, Chen G. Talanta; 2013 Dec 15; 117():119-26. PubMed ID: 24209319 [Abstract] [Full Text] [Related]
4. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis. Fan H, Bao H, Zhang L, Chen G. Proteomics; 2011 Aug 15; 11(16):3420-3. PubMed ID: 21751341 [Abstract] [Full Text] [Related]
7. Immobilization of trypsin on miniature incandescent bulbs for infrared-assisted proteolysis. Ge H, Bao H, Zhang L, Chen G. Anal Chim Acta; 2014 Oct 03; 845():77-84. PubMed ID: 25201275 [Abstract] [Full Text] [Related]
10. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors. Zhang P, Gao M, Zhu S, Lei J, Zhang X. J Chromatogr A; 2011 Nov 25; 1218(47):8567-71. PubMed ID: 22024345 [Abstract] [Full Text] [Related]
11. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping. Bao H, Lui T, Zhang L, Chen G. Proteomics; 2009 Feb 25; 9(4):1114-7. PubMed ID: 19180540 [Abstract] [Full Text] [Related]
12. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H, Yuan H, Liang Y, Xia S, Zhao Q, Wu Q, Zhang L, Liang Z, Zhang Y. J Chromatogr A; 2012 Jul 13; 1246():111-6. PubMed ID: 22446077 [Abstract] [Full Text] [Related]
13. Inflation bulb-driven microfluidic reactor for infrared-assisted proteolysis. Liu T, Bao H, Chen G. Electrophoresis; 2010 Sep 13; 31(18):3070-3. PubMed ID: 20725916 [Abstract] [Full Text] [Related]
15. Integration of electrodes in a suction cup-driven microchip for alternating current-accelerated proteolysis. Liu T, Bao H, Zhang L, Chen G. Electrophoresis; 2009 Sep 13; 30(18):3265-8. PubMed ID: 19705354 [Abstract] [Full Text] [Related]
16. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres. Li Y, Yan B, Deng C, Yu W, Xu X, Yang P, Zhang X. Proteomics; 2007 Jul 13; 7(14):2330-9. PubMed ID: 17570518 [Abstract] [Full Text] [Related]
17. A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Lee J, Soper SA, Murray KK. Rapid Commun Mass Spectrom; 2011 Mar 30; 25(6):693-9. PubMed ID: 21337630 [Abstract] [Full Text] [Related]
18. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith. Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y. Proteomics; 2011 Mar 30; 11(5):991-5. PubMed ID: 21280225 [Abstract] [Full Text] [Related]
19. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y. Anal Chem; 2008 Apr 15; 80(8):2949-56. PubMed ID: 18333626 [Abstract] [Full Text] [Related]
20. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis. Wang S, Chen Z, Yang P, Chen G. Proteomics; 2008 May 15; 8(9):1785-8. PubMed ID: 18442168 [Abstract] [Full Text] [Related] Page: [Next] [New Search]