These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
328 related items for PubMed ID: 23999117
1. Inhibition of catecholamine secretion by iron-rich and iron-deprived multiwalled carbon nanotubes in chromaffin cells. Gavello D, Fenoglio I, Fubini B, Cesano F, Premoselli F, Renna A, Carbone E, Carabelli V. Neurotoxicology; 2013 Dec; 39():84-94. PubMed ID: 23999117 [Abstract] [Full Text] [Related]
2. Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes. Gavello D, Vandael DH, Cesa R, Premoselli F, Marcantoni A, Cesano F, Scarano D, Fubini B, Carbone E, Fenoglio I, Carabelli V. Nanotoxicology; 2012 Feb; 6(1):47-60. PubMed ID: 21322767 [Abstract] [Full Text] [Related]
4. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. Gavello D, Vandael D, Gosso S, Carbone E, Carabelli V. J Physiol; 2015 Nov 15; 593(22):4835-53. PubMed ID: 26282459 [Abstract] [Full Text] [Related]
5. The effect of CdSe-ZnS quantum dots on calcium currents and catecholamine secretion in mouse chromaffin cells. Gosso S, Gavello D, Giachello CN, Franchino C, Carbone E, Carabelli V. Biomaterials; 2011 Dec 15; 32(34):9040-50. PubMed ID: 21872323 [Abstract] [Full Text] [Related]
6. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores. Zerbes M, Clark CL, Powis DA. Cell Calcium; 2001 Jan 15; 29(1):49-58. PubMed ID: 11133355 [Abstract] [Full Text] [Related]
7. Exocytosis is impaired in mucopolysaccharidosis IIIA mouse chromaffin cells. Keating DJ, Winter MA, Hemsley KM, Mackenzie KD, Teo EH, Hopwood JJ, Brooks DA, Parkinson-Lawrence EJ. Neuroscience; 2012 Dec 27; 227():110-8. PubMed ID: 23022219 [Abstract] [Full Text] [Related]
8. Synapsin II negatively regulates catecholamine release. Villanueva M, Thornley K, Augustine GJ, Wightman RM. Brain Cell Biol; 2006 Jun 27; 35(2-3):125-36. PubMed ID: 17957479 [Abstract] [Full Text] [Related]
9. Extracellular Ca²⁺ per se inhibits quantal size of catecholamine release in adrenal slice chromaffin cells. Shang S, Wang C, Liu B, Wu Q, Zhang Q, Liu W, Zheng L, Xu H, Kang X, Zhang X, Wang Y, Zheng H, Wang S, Xiong W, Liu T, Zhou Z. Cell Calcium; 2014 Sep 27; 56(3):202-7. PubMed ID: 25103334 [Abstract] [Full Text] [Related]
10. Differences in the H2S-induced quantal release of catecholamine in adrenal chromaffin cells of neonatal and adult rats. Wang K, Zhu D, Yu X, Sun J, Yao W. Toxicology; 2013 Oct 04; 312():12-7. PubMed ID: 23851080 [Abstract] [Full Text] [Related]
11. The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. Aldieri E, Fenoglio I, Cesano F, Gazzano E, Gulino G, Scarano D, Attanasio A, Mazzucco G, Ghigo D, Fubini B. J Toxicol Environ Health A; 2013 Oct 04; 76(18):1056-71. PubMed ID: 24188191 [Abstract] [Full Text] [Related]
12. Membrane cycling after the excess retrieval mode of rapid endocytosis in mouse chromaffin cells. Perez Bay AE, Belingheri AV, Alvarez YD, Marengo FD. Acta Physiol (Oxf); 2012 Mar 04; 204(3):403-18. PubMed ID: 21791014 [Abstract] [Full Text] [Related]
13. P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells. Alvarez YD, Ibañez LI, Uchitel OD, Marengo FD. Cell Calcium; 2008 Feb 04; 43(2):155-64. PubMed ID: 17561253 [Abstract] [Full Text] [Related]
14. Selectivity of action of pregabalin on Ca(2+) channels but not on fusion pore, exocytotic machinery, or mitochondria in chromaffin cells of the adrenal gland. Hernández-Vivanco A, Pérez-Alvarez A, Caba-González JC, Alonso MT, Moreno-Ortega AJ, Cano-Abad M, Ruiz-Nuño A, Carmona-Hidalgo B, Albillos A. J Pharmacol Exp Ther; 2012 Aug 04; 342(2):263-72. PubMed ID: 22537772 [Abstract] [Full Text] [Related]
15. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells. Pérez-Alvarez A, Albillos A. J Neurochem; 2007 Dec 04; 103(6):2281-90. PubMed ID: 17883397 [Abstract] [Full Text] [Related]
16. Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cells. Wu PC, Fann MJ, Kao LS. J Neurochem; 2010 Mar 04; 112(5):1210-22. PubMed ID: 20002295 [Abstract] [Full Text] [Related]
17. Dual role of calbindin-D28K in vesicular catecholamine release from mouse chromaffin cells. Westerink RH, Rook MB, Beekwilder JP, Wadman WJ. J Neurochem; 2006 Oct 04; 99(2):628-40. PubMed ID: 16824046 [Abstract] [Full Text] [Related]
18. Differential regulation of multiple populations of granules in rat adrenal chromaffin cells by culture duration and cyclic AMP. Tang KS, Tse A, Tse FW. J Neurochem; 2005 Mar 04; 92(5):1126-39. PubMed ID: 15715663 [Abstract] [Full Text] [Related]
19. Reduced calcium current density in female versus male mouse adrenal chromaffin cells in situ. Chan SA, Hill J, Smith C. Cell Calcium; 2012 Mar 04; 52(3-4):313-20. PubMed ID: 22551621 [Abstract] [Full Text] [Related]
20. Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria. Alés E, Fuentealba J, García AG, López MG. Eur J Neurosci; 2005 Jan 04; 21(1):142-50. PubMed ID: 15654851 [Abstract] [Full Text] [Related] Page: [Next] [New Search]