These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 24005414

  • 21. Biosynthesis of the Metalloclusters of Nitrogenases.
    Hu Y, Ribbe MW.
    Annu Rev Biochem; 2016 Jun 02; 85():455-83. PubMed ID: 26844394
    [Abstract] [Full Text] [Related]

  • 22. Partial synthetic models of FeMoco with sulfide and carbyne ligands: Effect of interstitial atom in nitrogenase active site.
    Le LNV, Bailey GA, Scott AG, Agapie T.
    Proc Natl Acad Sci U S A; 2021 Dec 07; 118(49):. PubMed ID: 34857636
    [Abstract] [Full Text] [Related]

  • 23. Ligand metathesis as rational strategy for the synthesis of cubane-type heteroleptic iron-sulfur clusters relevant to the FeMo cofactor.
    Xu G, Wang Z, Ling R, Zhou J, Chen XD, Holm RH.
    Proc Natl Acad Sci U S A; 2018 May 15; 115(20):5089-5092. PubMed ID: 29654147
    [Abstract] [Full Text] [Related]

  • 24. Synthetic Analogues of Nitrogenase Metallocofactors: Challenges and Developments.
    Sickerman NS, Tanifuji K, Hu Y, Ribbe MW.
    Chemistry; 2017 Sep 12; 23(51):12425-12432. PubMed ID: 28726330
    [Abstract] [Full Text] [Related]

  • 25. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins.
    Curatti L, Hernandez JA, Igarashi RY, Soboh B, Zhao D, Rubio LM.
    Proc Natl Acad Sci U S A; 2007 Nov 06; 104(45):17626-31. PubMed ID: 17978192
    [Abstract] [Full Text] [Related]

  • 26. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase.
    Hickey DP, Cai R, Yang ZY, Grunau K, Einsle O, Seefeldt LC, Minteer SD.
    J Am Chem Soc; 2019 Oct 30; 141(43):17150-17157. PubMed ID: 31577428
    [Abstract] [Full Text] [Related]

  • 27. The discovery of Mo(III) in FeMoco: reuniting enzyme and model chemistry.
    Bjornsson R, Neese F, Schrock RR, Einsle O, DeBeer S.
    J Biol Inorg Chem; 2015 Mar 30; 20(2):447-60. PubMed ID: 25549604
    [Abstract] [Full Text] [Related]

  • 28. Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N2 Reduction.
    Harris DF, Lukoyanov DA, Kallas H, Trncik C, Yang ZY, Compton P, Kelleher N, Einsle O, Dean DR, Hoffman BM, Seefeldt LC.
    Biochemistry; 2019 Jul 30; 58(30):3293-3301. PubMed ID: 31283201
    [Abstract] [Full Text] [Related]

  • 29. An Fe-N₂ Complex That Generates Hydrazine and Ammonia via Fe═NNH₂: Demonstrating a Hybrid Distal-to-Alternating Pathway for N₂ Reduction.
    Rittle J, Peters JC.
    J Am Chem Soc; 2016 Mar 30; 138(12):4243-8. PubMed ID: 26937584
    [Abstract] [Full Text] [Related]

  • 30. Decoding the nitrogenase mechanism: the homologue approach.
    Hu Y, Ribbe MW.
    Acc Chem Res; 2010 Mar 16; 43(3):475-84. PubMed ID: 20030377
    [Abstract] [Full Text] [Related]

  • 31. Evaluating molecular cobalt complexes for the conversion of N2 to NH3.
    Del Castillo TJ, Thompson NB, Suess DL, Ung G, Peters JC.
    Inorg Chem; 2015 Oct 05; 54(19):9256-62. PubMed ID: 26001022
    [Abstract] [Full Text] [Related]

  • 32. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.
    Fay AW, Blank MA, Yoshizawa JM, Lee CC, Wiig JA, Hu Y, Hodgson KO, Hedman B, Ribbe MW.
    Dalton Trans; 2010 Mar 28; 39(12):3124-30. PubMed ID: 20221547
    [Abstract] [Full Text] [Related]

  • 33. Comparing Molecular Mechanisms in Solar NH3 Production and Relations with CO2 Reduction.
    Mallamace D, Papanikolaou G, Perathoner S, Centi G, Lanzafame P.
    Int J Mol Sci; 2020 Dec 25; 22(1):. PubMed ID: 33375617
    [Abstract] [Full Text] [Related]

  • 34. Catalytic reduction of hydrazine to ammonia by a mononuclear iron(II) complex on a tris(thiolato)phosphine platform.
    Chang YH, Chan PM, Tsai YF, Lee GH, Hsu HF.
    Inorg Chem; 2014 Jan 21; 53(2):664-6. PubMed ID: 24377381
    [Abstract] [Full Text] [Related]

  • 35. Nitrogenase-Relevant Reactivity of a Synthetic Iron-Sulfur-Carbon Site.
    Speelman AL, Čorić I, Van Stappen C, DeBeer S, Mercado BQ, Holland PL.
    J Am Chem Soc; 2019 Aug 21; 141(33):13148-13157. PubMed ID: 31403298
    [Abstract] [Full Text] [Related]

  • 36. Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system.
    Threatt SD, Rees DC.
    FEBS Lett; 2023 Jan 21; 597(1):45-58. PubMed ID: 36344435
    [Abstract] [Full Text] [Related]

  • 37. Biosynthesis of the iron-molybdenum cofactor of nitrogenase.
    Rubio LM, Ludden PW.
    Annu Rev Microbiol; 2008 Jan 21; 62():93-111. PubMed ID: 18429691
    [Abstract] [Full Text] [Related]

  • 38. Mechanism of Mo-dependent nitrogenase.
    Seefeldt LC, Hoffman BM, Dean DR.
    Annu Rev Biochem; 2009 Jan 21; 78():701-22. PubMed ID: 19489731
    [Abstract] [Full Text] [Related]

  • 39. Proteome Profiling of the Rhodobacter capsulatus Molybdenum Response Reveals a Role of IscN in Nitrogen Fixation by Fe-Nitrogenase.
    Hoffmann MC, Wagner E, Langklotz S, Pfänder Y, Hött S, Bandow JE, Masepohl B.
    J Bacteriol; 2015 Dec 07; 198(4):633-43. PubMed ID: 26644433
    [Abstract] [Full Text] [Related]

  • 40. Kinetic Understanding of N2 Reduction versus H2 Evolution at the E4(4H) Janus State in the Three Nitrogenases.
    Harris DF, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.
    Biochemistry; 2018 Oct 02; 57(39):5706-5714. PubMed ID: 30183278
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.