These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Heat shock in Cronobacter sakazakii induces direct protection and cross-protection against simulated gastric fluid stress. Niu H, MingzheYang, Qi Y, Liu Y, Wang X, Dong Q. Food Microbiol; 2022 May; 103():103948. PubMed ID: 35082065 [Abstract] [Full Text] [Related]
6. The effect of heat shock on the response of Cronobacter sakazakii to subsequent lethal stresses. Chang CH, Chiang ML, Chou CC. Foodborne Pathog Dis; 2010 Jan; 7(1):71-6. PubMed ID: 19821740 [Abstract] [Full Text] [Related]
12. Acid adaptation affects the viability of Listeria monocytogenes BCRC 14846 and Salmonella Typhimurium BCRC 10747 exposed to disinfectants at 25°C and 40°C. Lin MH, Lee SL, Chou CC. Foodborne Pathog Dis; 2011 Oct; 8(10):1077-81. PubMed ID: 21740275 [Abstract] [Full Text] [Related]
13. Expression of superoxide dismutase, catalase and thermostable direct hemolysin by, and growth in the presence of various nitrogen and carbon sources of heat-shocked and ethanol-shocked Vibrio parahaemolyticus. Chiang ML, Chou CC. Int J Food Microbiol; 2008 Feb 10; 121(3):268-74. PubMed ID: 18158197 [Abstract] [Full Text] [Related]
14. Examine the Correlation between Heat Shock Protein IbpA and Heat Tolerance in Cronobacter sakazakii. Zhao ZJ, Wang B, Yuan J, Liang HY, Dong SG, Zeng M. Biomed Environ Sci; 2017 Aug 10; 30(8):606-610. PubMed ID: 28807101 [Abstract] [Full Text] [Related]
15. Selection for loss of RpoS in Cronobacter sakazakii by growth in the presence of acetate as a carbon source. Álvarez-Ordóñez A, Begley M, Hill C. Appl Environ Microbiol; 2013 Mar 10; 79(6):2099-102. PubMed ID: 23335773 [Abstract] [Full Text] [Related]
16. Fatty acid composition, cell morphology and responses to challenge by organic acid and sodium chloride of heat-shocked Vibrio parahaemolyticus. Chiang ML, Yu RC, Chou CC. Int J Food Microbiol; 2005 Oct 15; 104(2):179-87. PubMed ID: 15982770 [Abstract] [Full Text] [Related]
17. Use of proteomics to elucidate characteristics of Cronobacter sakazakii under mild heat stress. Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lv X, Zhang Q, Chen J, Cui S, Yang B. Int J Food Microbiol; 2024 Dec 02; 425():110885. PubMed ID: 39178661 [Abstract] [Full Text] [Related]
18. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii. Bao X, Jia X, Chen L, Peters BM, Lin CW, Chen D, Li L, Li B, Li Y, Xu Z, Shirtliff ME. Microb Pathog; 2017 May 02; 106():16-19. PubMed ID: 28012985 [Abstract] [Full Text] [Related]
19. Impact of environmental stress desiccation, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakazakii. Al-Nabulsi AA, Osaili TM, Elabedeen NA, Jaradat ZW, Shaker RR, Kheirallah KA, Tarazi YH, Holley RA. Int J Food Microbiol; 2011 Mar 30; 146(2):137-43. PubMed ID: 21402424 [Abstract] [Full Text] [Related]
20. Antimicrobial Activity of Ferulic Acid Against Cronobacter sakazakii and Possible Mechanism of Action. Shi C, Zhang X, Sun Y, Yang M, Song K, Zheng Z, Chen Y, Liu X, Jia Z, Dong R, Cui L, Xia X. Foodborne Pathog Dis; 2016 Apr 30; 13(4):196-204. PubMed ID: 26919471 [Abstract] [Full Text] [Related] Page: [Next] [New Search]