These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


88 related items for PubMed ID: 2402216

  • 1. Estimation of minimal weight of adolescent males using multicomponent models.
    Horswill CA, Lohman TG, Slaughter MH, Boileau RA, Wilmore JH.
    Med Sci Sports Exerc; 1990 Aug; 22(4):528-32. PubMed ID: 2402216
    [Abstract] [Full Text] [Related]

  • 2. Prediction of percent body fat in adult males using dual energy x-ray absorptiometry, skinfolds, and hydrostatic weighing.
    Clark RR, Kuta JM, Sullivan JC.
    Med Sci Sports Exerc; 1993 Apr; 25(4):528-35. PubMed ID: 8479309
    [Abstract] [Full Text] [Related]

  • 3. Effects of anorexia nervosa on clinical, hematologic, biochemical, and bone density parameters in community-dwelling adolescent girls.
    Misra M, Aggarwal A, Miller KK, Almazan C, Worley M, Soyka LA, Herzog DB, Klibanski A.
    Pediatrics; 2004 Dec; 114(6):1574-83. PubMed ID: 15574617
    [Abstract] [Full Text] [Related]

  • 4. Body composition of adolescent males. Part I. Total body water in normal adolescent males. Part II. Body composition of the male reference adolescent.
    Haschke F.
    Acta Paediatr Scand Suppl; 1983 Dec; 307():1-23. PubMed ID: 6579821
    [Abstract] [Full Text] [Related]

  • 5. Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents.
    Horlick M, Wang J, Pierson RN, Thornton JC.
    Pediatrics; 2004 Sep; 114(3):e337-45. PubMed ID: 15342895
    [Abstract] [Full Text] [Related]

  • 6. Lean tissue mass is a better predictor of bone mineral content and density than body weight in prepubertal girls.
    Courteix D, Lespessailles E, Loiseau-Peres S, Obert P, Ferry B, Benhamou CL.
    Rev Rhum Engl Ed; 1998 May; 65(5):328-36. PubMed ID: 9636952
    [Abstract] [Full Text] [Related]

  • 7. Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking.
    Foley S, Quinn S, Jones G.
    Bone; 2009 May; 44(5):752-7. PubMed ID: 19103314
    [Abstract] [Full Text] [Related]

  • 8. Body fat measurement in adolescent athletes: multicompartment molecular model comparison.
    Silva AM, Minderico CS, Teixeira PJ, Pietrobelli A, Sardinha LB.
    Eur J Clin Nutr; 2006 Aug; 60(8):955-64. PubMed ID: 16523205
    [Abstract] [Full Text] [Related]

  • 9. Impact of indexing resting metabolic rate against fat-free mass determined by different body composition models.
    LaForgia J, van der Ploeg GE, Withers RT, Gunn SM, Brooks AG, Chatterton BE.
    Eur J Clin Nutr; 2004 Aug; 58(8):1132-41. PubMed ID: 15054426
    [Abstract] [Full Text] [Related]

  • 10. [Bone mineral and body composition analysis of whole body in 292 normal subjects assessed by dual X-ray absorptiometry].
    Qin MW, Yu W, Xu L, Tian JP, Xing XP, Meng XW, Yan HZ, Ge QS.
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):66-9. PubMed ID: 12905612
    [Abstract] [Full Text] [Related]

  • 11. Comparison of dual-energy x-ray absorptiometry and measurement of total body water content by deuterium oxide dilution for estimating body composition in dogs.
    Son HR, d'Avignon DA, Laflamme DP.
    Am J Vet Res; 1998 May; 59(5):529-32. PubMed ID: 9582950
    [Abstract] [Full Text] [Related]

  • 12. Bone mineral density in elderly Chinese: effects of age, sex, weight, height, and body mass index.
    Lei SF, Deng FY, Li MX, Dvornyk V, Deng HW.
    J Bone Miner Metab; 2004 May; 22(1):71-8. PubMed ID: 14691691
    [Abstract] [Full Text] [Related]

  • 13. Composition of the fat-free mass in obese and nonobese children: matched case-control analyses.
    Haroun D, Wells JC, Williams JE, Fuller NJ, Fewtrell MS, Lawson MS.
    Int J Obes (Lond); 2005 Jan; 29(1):29-36. PubMed ID: 15520827
    [Abstract] [Full Text] [Related]

  • 14. Multicomponent cross-validation of minimum weight predictions for college wrestlers.
    Clark RR, Sullivan JC, Bartok C, Schoeller DA.
    Med Sci Sports Exerc; 2003 Feb; 35(2):342-7. PubMed ID: 12569226
    [Abstract] [Full Text] [Related]

  • 15. Assessment of body composition by bioelectrical impedance in adolescent patients with celiac disease.
    De Lorenzo A, Di Campli C, Andreoli A, Sasso GF, Bonamico M, Gasbarrini A.
    Am J Gastroenterol; 1999 Oct; 94(10):2951-5. PubMed ID: 10520850
    [Abstract] [Full Text] [Related]

  • 16. Relative contribution of lean and fat mass component to bone mineral density in males.
    Douchi T, Kuwahata R, Matsuo T, Uto H, Oki T, Nagata Y.
    J Bone Miner Metab; 2003 Oct; 21(1):17-21. PubMed ID: 12491089
    [Abstract] [Full Text] [Related]

  • 17. The validity of predicted body fat percentage from body mass index and from impedance in samples of five European populations.
    Deurenberg P, Andreoli A, Borg P, Kukkonen-Harjula K, de Lorenzo A, van Marken Lichtenbelt WD, Testolin G, Vigano R, Vollaard N.
    Eur J Clin Nutr; 2001 Nov; 55(11):973-9. PubMed ID: 11641746
    [Abstract] [Full Text] [Related]

  • 18. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA, Roberts SA, Adams JE, Mughal MZ.
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [Abstract] [Full Text] [Related]

  • 19. The accuracy of coaches' estimates of minimal wrestling weight.
    Housh TJ, Johnson GO, Housh DJ.
    Med Sci Sports Exerc; 1991 Feb; 23(2):254-63. PubMed ID: 2017024
    [Abstract] [Full Text] [Related]

  • 20. Estimation of minimal wrestling weight using measures of body build and body composition.
    Thorland WG, Johnson GO, Cisar CJ, Housh TJ.
    Int J Sports Med; 1987 Dec; 8(6):365-70. PubMed ID: 3429079
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.