These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 240222

  • 1. The nature of the in vitro irreversible binding of carbon tetrachloride to microsomal lipids.
    Villarruel MC, Díaz Gómez MI, Castro JA.
    Toxicol Appl Pharmacol; 1975 Jul; 33(1):106-14. PubMed ID: 240222
    [No Abstract] [Full Text] [Related]

  • 2. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo.
    Uehleke H, Werner T.
    Arch Toxicol; 1975 Dec 18; 34(4):289-308. PubMed ID: 3152
    [Abstract] [Full Text] [Related]

  • 3. Enhanced hepatic microsomal activity by pretreatment of rats with acetone or isopropanol.
    Sipes IG, Stripp B, Krishna G, Maling HM, Gillette JR.
    Proc Soc Exp Biol Med; 1973 Jan 18; 142(1):237-40. PubMed ID: 4405141
    [No Abstract] [Full Text] [Related]

  • 4. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450.
    Ahr HJ, King LJ, Nastainczyk W, Ullrich V.
    Biochem Pharmacol; 1980 Oct 15; 29(20):2855-61. PubMed ID: 7437085
    [No Abstract] [Full Text] [Related]

  • 5. Carbon tetrachloride hepatotoxicity: an example of lethal cleavage.
    Rechnagel RO, Glende EA.
    CRC Crit Rev Toxicol; 1973 Nov 15; 2(3):263-97. PubMed ID: 4357489
    [No Abstract] [Full Text] [Related]

  • 6. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P-450.
    Sipes IG, Krishna G, Gillette JR.
    Life Sci; 1977 May 01; 20(9):1541-8. PubMed ID: 17803
    [No Abstract] [Full Text] [Related]

  • 7. Effect of dietary antioxidants and phenobarbital pretreatment on microsomal lipid peroxidation and activation by carbon tetrachloride.
    Taylor SL, Tappel AL.
    Life Sci; 1976 Oct 15; 19(8):1151-60. PubMed ID: 11382
    [No Abstract] [Full Text] [Related]

  • 8. Self-catalysed, O2-independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride.
    de Groot H, Haas W.
    Biochem Pharmacol; 1981 Aug 15; 30(16):2343-7. PubMed ID: 7295345
    [No Abstract] [Full Text] [Related]

  • 9. Effects of lipid peroxidation on the microsomal electron transport system and the rate of drug metabolism in rat liver.
    Kitada M, Kamataki T, Kitagawa H.
    Chem Pharm Bull (Tokyo); 1974 Apr 15; 22(4):752-6. PubMed ID: 4153669
    [No Abstract] [Full Text] [Related]

  • 10. Carbon tetrachloride-induced protection against carbon tetrachloride toxicity. The role of the liver microsomal drug-metabolizing system.
    Glende EA.
    Biochem Pharmacol; 1972 Jun 15; 21(12):1697-702. PubMed ID: 4405417
    [No Abstract] [Full Text] [Related]

  • 11. [Formation of chloroform from carbon tetrachloride in liver microsomes, lipid peroxidation and destruction of cytochrome P-450].
    Reiner O, Athanassopoulos S, Hellmer KH, Murray RE, Uehleke H.
    Arch Toxikol; 1972 Jun 15; 29(3):219-33. PubMed ID: 4404917
    [No Abstract] [Full Text] [Related]

  • 12. The apparent loss of cytochrome P-450 associated with metabolic activation of carbon tetrachloride.
    Yamazoe Y, Sugiura M, Kamataki T, Kato R.
    Jpn J Pharmacol; 1979 Oct 15; 29(5):715-21. PubMed ID: 43918
    [Abstract] [Full Text] [Related]

  • 13. 12alpha-hydroxylation of 7alpha-hydroxy-4-cholesten-3-one by a reconstituted system from rat liver microsomes.
    Bernhardsson C, Björkhem I, Danielsson H, Wikvall K.
    Biochem Biophys Res Commun; 1973 Oct 01; 54(3):1030-8. PubMed ID: 4148126
    [No Abstract] [Full Text] [Related]

  • 14. Species differences in carbon tetrachloride-induced hepatotoxicity: the role of CCl4 activation and of lipid peroxidation.
    Díaz Gómez MI, de Castro CR, D'Acosta N, de Fenos OM, de Ferreyra EC, Castro JA.
    Toxicol Appl Pharmacol; 1975 Oct 01; 34(1):102-14. PubMed ID: 1198608
    [No Abstract] [Full Text] [Related]

  • 15. Protection by diethyldithiocarbamate against carbon tetrachloride lethality in rats and against carbon tetrachloride-induced lipid peroxidation in vitro.
    Lutz LM, Glende EA, Recknagel RO.
    Biochem Pharmacol; 1973 Jul 15; 22(14):1729-34. PubMed ID: 4146052
    [No Abstract] [Full Text] [Related]

  • 16. CCl4-induced damage to endoplasmatic reticulum membranes.
    Archakov AI, Karuzina II.
    Biochem Pharmacol; 1973 Sep 01; 22(17):2095-104. PubMed ID: 4147419
    [No Abstract] [Full Text] [Related]

  • 17. In vivo covalent binding of 14CCl4 metabolites in liver microsomal lipids.
    Reynolds ES, Moslen MT.
    Biochem Biophys Res Commun; 1974 Apr 08; 57(3):747-50. PubMed ID: 4363941
    [No Abstract] [Full Text] [Related]

  • 18. Reductive oxygenation of carbon tetrachloride: trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine.
    Mico BA, Pohl LR.
    Arch Biochem Biophys; 1983 Sep 08; 225(2):596-609. PubMed ID: 6625601
    [Abstract] [Full Text] [Related]

  • 19. Binding of 14 C-carbon tetrachloride to microsomal proteins in vitro and formation of CHC1 3 by reduced liver microsomes.
    Uehleke H, Hellmer KH, Tabarelli S.
    Xenobiotica; 1973 Jan 08; 3(1):1-11. PubMed ID: 4144825
    [No Abstract] [Full Text] [Related]

  • 20. Critical role of lipid peroxidation in carbon tetrachloride-induced loss of aminopyrine demethylase, cytochrome P-450 and glucose 6-phosphatase.
    Glende EA, Hruszkewycz AM, Recknagel RO.
    Biochem Pharmacol; 1976 Oct 01; 25(19):2163-70. PubMed ID: 9947
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.