These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Evaluation of the capacity of the cyanobacterium Microcystis novacekii to remove atrazine from a culture medium. Campos MM, Faria VH, Teodoro TS, Barbosa FA, Magalhães SM. J Environ Sci Health B; 2013; 48(2):101-7. PubMed ID: 23305277 [Abstract] [Full Text] [Related]
6. Effects of atrazine on circadian RNA, DNA and total protein rhythms in the thyroid and adrenal. Nicolau GY, Socoliuc E. Endocrinologie; 1980; 18(3):161-6. PubMed ID: 6159673 [Abstract] [Full Text] [Related]
7. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action. Shao J, Liu D, Gong D, Zeng Q, Yan Z, Gu JD. Aquat Toxicol; 2013 Oct 15; 142-143():257-63. PubMed ID: 24060579 [Abstract] [Full Text] [Related]
8. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Hong Y, Hu HY, Li FM. Ecotoxicol Environ Saf; 2008 Oct 15; 71(2):527-34. PubMed ID: 18054385 [Abstract] [Full Text] [Related]
9. Temperature-dependent sensitivity of growth and photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of Microcystis aeruginosa to the herbicide atrazine. Chalifour A, Juneau P. Aquat Toxicol; 2011 May 15; 103(1-2):9-17. PubMed ID: 21392491 [Abstract] [Full Text] [Related]
10. Effects of prd circadian clock mutations on FRQ-less rhythms in Neurospora. Li S, Lakin-Thomas P. J Biol Rhythms; 2010 Apr 15; 25(2):71-80. PubMed ID: 20348458 [Abstract] [Full Text] [Related]
11. A novel rhythm of microcystin biosynthesis is described in the cyanobacterium Microcystis panniformis Komárek et al. Bittencourt-Oliveira Mdo C, Kujbida P, Cardozo KH, Carvalho VM, Moura Ado N, Colepicolo P, Pinto E. Biochem Biophys Res Commun; 2005 Jan 21; 326(3):687-94. PubMed ID: 15596154 [Abstract] [Full Text] [Related]
12. Comparison of β-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast. Komoto S, Kondo H, Fukuta O, Togari A. Chronobiol Int; 2012 Feb 21; 29(1):66-74. PubMed ID: 22217103 [Abstract] [Full Text] [Related]
15. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Zhang X, Chen Y, Wang ZY, Chen Z, Gu H, Qu LJ. Plant J; 2007 Aug 21; 51(3):512-25. PubMed ID: 17587236 [Abstract] [Full Text] [Related]
16. Daily coordination of cancer growth and circadian clock gene expression. You S, Wood PA, Xiong Y, Kobayashi M, Du-Quiton J, Hrushesky WJ. Breast Cancer Res Treat; 2005 May 21; 91(1):47-60. PubMed ID: 15868431 [Abstract] [Full Text] [Related]
17. The genetics of phototransduction and circadian rhythms in Arabidopsis. Millar AJ, Kay SA. Bioessays; 1997 Mar 21; 19(3):209-14. PubMed ID: 9080770 [Abstract] [Full Text] [Related]
19. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana. Yamashino T. Biosci Biotechnol Biochem; 2013 Mar 21; 77(1):10-6. PubMed ID: 23291766 [Abstract] [Full Text] [Related]
20. A cyanobacterial circadian timing mechanism. Ditty JL, Williams SB, Golden SS. Annu Rev Genet; 2003 Mar 21; 37():513-43. PubMed ID: 14616072 [Abstract] [Full Text] [Related] Page: [Next] [New Search]