These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
362 related items for PubMed ID: 24035462
1. Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA. Clabeaux BL, Navarro DA, Aga DS, Bisson MA. Ecotoxicol Environ Saf; 2013 Dec; 98():236-43. PubMed ID: 24035462 [Abstract] [Full Text] [Related]
2. Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation. Clabeaux BL, Navarro DA, Aga DS, Bisson MA. Environ Sci Technol; 2011 Jun 15; 45(12):5332-8. PubMed ID: 21568316 [Abstract] [Full Text] [Related]
3. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Guo D, Ali A, Ren C, Du J, Li R, Lahori AH, Xiao R, Zhang Z, Zhang Z. Ecotoxicol Environ Saf; 2019 Jan 15; 167():396-403. PubMed ID: 30366273 [Abstract] [Full Text] [Related]
4. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY, Chen ZS. Chemosphere; 2005 Aug 15; 60(8):1062-71. PubMed ID: 15993153 [Abstract] [Full Text] [Related]
5. Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Lambrechts T, Gustot Q, Couder E, Houben D, Iserentant A, Lutts S. Chemosphere; 2011 Nov 15; 85(8):1290-8. PubMed ID: 21839490 [Abstract] [Full Text] [Related]
6. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Li Z, Wu L, Luo Y, Christie P. Chemosphere; 2018 Mar 15; 194():432-440. PubMed ID: 29227891 [Abstract] [Full Text] [Related]
7. Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study. Wen J, McLaughlin MJ, Stacey SP, Kirby JK. Environ Sci Pollut Res Int; 2016 Nov 15; 23(21):21327-21335. PubMed ID: 27502457 [Abstract] [Full Text] [Related]
9. EDTA-assisted Pb phytoextraction. Saifullah, Meers E, Qadir M, de Caritat P, Tack FM, Du Laing G, Zia MH. Chemosphere; 2009 Mar 15; 74(10):1279-91. PubMed ID: 19121533 [Abstract] [Full Text] [Related]
10. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Lai HY, Chen ZS. Chemosphere; 2004 Apr 15; 55(3):421-30. PubMed ID: 14987941 [Abstract] [Full Text] [Related]
11. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Luo C, Shen Z, Li X, Baker AJ. Chemosphere; 2006 Jun 15; 63(10):1773-84. PubMed ID: 16297960 [Abstract] [Full Text] [Related]
12. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FM. Chemosphere; 2005 Feb 15; 58(8):1011-22. PubMed ID: 15664609 [Abstract] [Full Text] [Related]
13. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Suthar V, Memon KS, Mahmood-ul-Hassan M. Environ Monit Assess; 2014 Jun 15; 186(6):3957-68. PubMed ID: 24515546 [Abstract] [Full Text] [Related]
14. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Muhammad D, Chen F, Zhao J, Zhang G, Wu F. Int J Phytoremediation; 2009 Aug 15; 11(6):558-74. PubMed ID: 19810355 [Abstract] [Full Text] [Related]
15. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain. Lu Y, Luo D, Lai A, Liu G, Liu L, Long J, Zhang H, Chen Y. Environ Sci Pollut Res Int; 2017 Jan 15; 24(2):1845-1853. PubMed ID: 27796994 [Abstract] [Full Text] [Related]
17. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead-zinc mine, Iran. Hesami R, Salimi A, Ghaderian SM. Environ Sci Pollut Res Int; 2018 Mar 15; 25(9):8701-8714. PubMed ID: 29322395 [Abstract] [Full Text] [Related]
18. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. Lombi E, Zhao FJ, Dunham SJ, McGrath SP. J Environ Qual; 2001 Mar 15; 30(6):1919-26. PubMed ID: 11789997 [Abstract] [Full Text] [Related]
19. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium. Wong JW, Wong WW, Wei Z, Jagadeesan H. Sci Total Environ; 2004 May 25; 324(1-3):235-46. PubMed ID: 15081709 [Abstract] [Full Text] [Related]
20. [Enhanced Phytoextraction of Heavy Metals from Contaminated Soils Using Sedum alfredii Hance with Biodegradable Chelate GLDA]. Wei ZB, Chen XH, Wu QT, Tan M. Huan Jing Ke Xue; 2015 May 25; 36(5):1864-9. PubMed ID: 26314141 [Abstract] [Full Text] [Related] Page: [Next] [New Search]