These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
338 related items for PubMed ID: 24035693
1. Influence of the operation conditions on CO2 capture by CaO-derived sorbents prepared from synthetic CaCO3. Nieto-Sanchez AJ, Olivares-Marin M, Garcia S, Pevida C, Cuerda-Correa EM. Chemosphere; 2013 Nov; 93(9):2148-58. PubMed ID: 24035693 [Abstract] [Full Text] [Related]
2. Fabrication of CaO-based sorbents for CO₂ capture by a mixing method. Qin C, Liu W, An H, Yin J, Feng B. Environ Sci Technol; 2012 Feb 07; 46(3):1932-9. PubMed ID: 22216962 [Abstract] [Full Text] [Related]
3. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture. Liu W, Low NW, Feng B, Wang G, Diniz da Costa JC. Environ Sci Technol; 2010 Jan 15; 44(2):841-7. PubMed ID: 20030311 [Abstract] [Full Text] [Related]
4. CO₂ uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds. Wang T, Xiao DC, Huang CH, Hsieh YK, Tan CS, Wang CF. J Hazard Mater; 2014 Apr 15; 270():92-101. PubMed ID: 24553353 [Abstract] [Full Text] [Related]
5. Sorbents with high efficiency for CO2 capture based on amines-supported carbon for biogas upgrading. Pino L, Italiano C, Vita A, Fabiano C, Recupero V. J Environ Sci (China); 2016 Oct 15; 48():138-150. PubMed ID: 27745659 [Abstract] [Full Text] [Related]
6. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption. Goel C, Bhunia H, Bajpai PK. J Environ Sci (China); 2015 Jun 01; 32():238-48. PubMed ID: 26040750 [Abstract] [Full Text] [Related]
7. Mechanical activation of CaO-based adsorbents for CO(2) capture. Sayyah M, Lu Y, Masel RI, Suslick KS. ChemSusChem; 2013 Jan 01; 6(1):193-8. PubMed ID: 23132751 [Abstract] [Full Text] [Related]
8. Porous carbon material containing CaO for acidic gas capture: preparation and properties. Przepiórski J, Czyżewski A, Pietrzak R, Toyoda M, Morawski AW. J Hazard Mater; 2013 Dec 15; 263 Pt 2():353-60. PubMed ID: 23743266 [Abstract] [Full Text] [Related]
9. Utilization of rice husk to enhance calcium oxide-based sorbent prepared from waste cockle shells for cyclic CO2 capture in high-temperature condition. Mohamed M, Yusup S, Quitain AT, Kida T. Environ Sci Pollut Res Int; 2019 Nov 15; 26(33):33882-33896. PubMed ID: 29956260 [Abstract] [Full Text] [Related]
10. The use of in situ powder X-ray diffraction in the investigation of dolomite as a potential reversible high-temperature CO2 sorbent. Readman JE, Blom R. Phys Chem Chem Phys; 2005 Mar 21; 7(6):1214-9. PubMed ID: 19791335 [Abstract] [Full Text] [Related]
11. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Choi S, Drese JH, Eisenberger PM, Jones CW. Environ Sci Technol; 2011 Mar 15; 45(6):2420-7. PubMed ID: 21323309 [Abstract] [Full Text] [Related]
12. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. Tian S, Jiang J, Yan F, Li K, Chen X. Environ Sci Technol; 2015 Jun 16; 49(12):7464-72. PubMed ID: 25961319 [Abstract] [Full Text] [Related]
13. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles. Manovic V, Anthony EJ. Environ Sci Technol; 2007 Jun 15; 41(12):4435-40. PubMed ID: 17626448 [Abstract] [Full Text] [Related]
14. Magnesian calcite sorbent for carbon dioxide capture. Mabry JC, Mondal K. Environ Technol; 2011 Jan 15; 32(1-2):55-67. PubMed ID: 21473269 [Abstract] [Full Text] [Related]
15. The influence of the precursor and synthesis method on the CO2 capture capacity of carpet waste-based sorbents. Olivares-Marín M, García S, Pevida C, Wong MS, Maroto-Valer M. J Environ Manage; 2011 Oct 15; 92(10):2810-7. PubMed ID: 21763061 [Abstract] [Full Text] [Related]
16. Capture of CO2 on γ-Al2O3 materials prepared by solution-combustion and ball-milling processes. Granados-Correa F, Bonifacio-Martínez J, Hernández-Mendoza H, Bulbulian S. J Air Waste Manag Assoc; 2016 Jul 15; 66(7):643-54. PubMed ID: 26962673 [Abstract] [Full Text] [Related]
17. Synthesis of CaO-based sorbents for CO(2) capture by a spray-drying technique. Liu W, Yin J, Qin C, Feng B, Xu M. Environ Sci Technol; 2012 Oct 16; 46(20):11267-72. PubMed ID: 22938656 [Abstract] [Full Text] [Related]
18. Feasibility of CO₂/SO₂ uptake enhancement of calcined limestone modified with rice husk ash during pressurized carbonation. Chen H, Zhao C, Ren Q. J Environ Manage; 2012 Jan 16; 93(1):235-44. PubMed ID: 22054590 [Abstract] [Full Text] [Related]
19. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Manovic V, Anthony EJ. Environ Sci Technol; 2007 Feb 15; 41(4):1420-5. PubMed ID: 17593751 [Abstract] [Full Text] [Related]
20. Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture. Shan S, Ma A, Hu Y, Jia Q, Wang Y, Peng J. Environ Pollut; 2016 Jan 15; 208(Pt B):546-52. PubMed ID: 26549755 [Abstract] [Full Text] [Related] Page: [Next] [New Search]