These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


338 related items for PubMed ID: 24035693

  • 21. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity.
    Chang PH, Chang YP, Chen SY, Yu CT, Chyou YP.
    ChemSusChem; 2011 Dec 16; 4(12):1844-51. PubMed ID: 22072595
    [Abstract] [Full Text] [Related]

  • 22. Effect of pelletization and addition of steam on the cyclic performance of carbon-templated, CaO-based CO2 sorbents.
    Broda M, Manovic V, Anthony EJ, Müller CR.
    Environ Sci Technol; 2014 May 06; 48(9):5322-8. PubMed ID: 24678727
    [Abstract] [Full Text] [Related]

  • 23. Fluidized bed combustion systems integrating CO2 capture with CaO.
    Abanades JC, Anthony EJ, Wang J, Oakey JE.
    Environ Sci Technol; 2005 Apr 15; 39(8):2861-6. PubMed ID: 15884387
    [Abstract] [Full Text] [Related]

  • 24. CO2 adsorption on chemically modified activated carbon.
    Caglayan BS, Aksoylu AE.
    J Hazard Mater; 2013 May 15; 252-253():19-28. PubMed ID: 23500788
    [Abstract] [Full Text] [Related]

  • 25. Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture.
    Donat F, Florin NH, Anthony EJ, Fennell PS.
    Environ Sci Technol; 2012 Jan 17; 46(2):1262-9. PubMed ID: 22191682
    [Abstract] [Full Text] [Related]

  • 26. Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites.
    Filitz R, Kierzkowska AM, Broda M, Müller CR.
    Environ Sci Technol; 2012 Jan 03; 46(1):559-65. PubMed ID: 22129091
    [Abstract] [Full Text] [Related]

  • 27. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles.
    Manovic V, Wu Y, He I, Anthony EJ.
    Environ Sci Technol; 2012 Nov 20; 46(22):12720-5. PubMed ID: 23088430
    [Abstract] [Full Text] [Related]

  • 28. Crystallographic transformation of limestone during calcination under CO2.
    Valverde JM, Medina S.
    Phys Chem Chem Phys; 2015 Sep 14; 17(34):21912-26. PubMed ID: 26235797
    [Abstract] [Full Text] [Related]

  • 29. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst.
    Broda M, Manovic V, Imtiaz Q, Kierzkowska AM, Anthony EJ, Müller CR.
    Environ Sci Technol; 2013 Jun 04; 47(11):6007-14. PubMed ID: 23675760
    [Abstract] [Full Text] [Related]

  • 30. Using one waste to tackle another: preparation of a CO2 capture material zeolite X from laterite residue and bauxite.
    Liu L, Du T, Li G, Yang F, Che S.
    J Hazard Mater; 2014 Aug 15; 278():551-8. PubMed ID: 25016453
    [Abstract] [Full Text] [Related]

  • 31. Synthesis of sintering-resistant sorbents for CO2 capture.
    Liu W, Feng B, Wu Y, Wang G, Barry J, da Costa JC.
    Environ Sci Technol; 2010 Apr 15; 44(8):3093-7. PubMed ID: 20205453
    [Abstract] [Full Text] [Related]

  • 32. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.
    Tian S, Jiang J, Chen X, Yan F, Li K.
    ChemSusChem; 2013 Dec 15; 6(12):2348-55. PubMed ID: 23913597
    [Abstract] [Full Text] [Related]

  • 33. Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications.
    Liu Y, Wilcox J.
    Environ Sci Technol; 2013 Jan 02; 47(1):95-101. PubMed ID: 22747244
    [Abstract] [Full Text] [Related]

  • 34. Effect of repeated steam hydration reactivation on CaO-based sorbents for CO2 capture.
    Materić BV, Sheppard C, Smedley SI.
    Environ Sci Technol; 2010 Dec 15; 44(24):9496-501. PubMed ID: 21114320
    [Abstract] [Full Text] [Related]

  • 35. Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions.
    Valverde JM, Perejon A, Perez-Maqueda LA.
    Environ Sci Technol; 2012 Jun 05; 46(11):6401-8. PubMed ID: 22551622
    [Abstract] [Full Text] [Related]

  • 36. Application of the sol-gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics.
    Broda M, Kierzkowska AM, Müller CR.
    ChemSusChem; 2012 Feb 13; 5(2):411-8. PubMed ID: 22298422
    [Abstract] [Full Text] [Related]

  • 37. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture.
    Al-Wabel M, Elfaki J, Usman A, Hussain Q, Ok YS.
    Environ Res; 2019 Jul 13; 174():69-79. PubMed ID: 31054524
    [Abstract] [Full Text] [Related]

  • 38. Capture of carbon dioxide by amine-loaded as-synthesized TiO2 nanotubes.
    Song F, Zhao Y, Ding H, Cao Y, Ding J, Bu Y, Zhong Q.
    Environ Technol; 2013 Jul 13; 34(9-12):1405-10. PubMed ID: 24191473
    [Abstract] [Full Text] [Related]

  • 39. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.
    Montes-Hernandez G, Pérez-López R, Renard F, Nieto JM, Charlet L.
    J Hazard Mater; 2009 Jan 30; 161(2-3):1347-54. PubMed ID: 18539389
    [Abstract] [Full Text] [Related]

  • 40. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.
    Kierzkowska AM, Pacciani R, Müller CR.
    ChemSusChem; 2013 Jul 30; 6(7):1130-48. PubMed ID: 23821467
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.