These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 24035851

  • 1. Label free sensing platform for amyloid fibrils effect on living cells.
    Gheorghiu M, David S, Polonschii C, Olaru A, Gaspar S, Bajenaru O, Popescu BO, Gheorghiu E.
    Biosens Bioelectron; 2014 Feb 15; 52():89-97. PubMed ID: 24035851
    [Abstract] [Full Text] [Related]

  • 2. Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling.
    Michaelis S, Wegener J, Robelek R.
    Biosens Bioelectron; 2013 Nov 15; 49():63-70. PubMed ID: 23711901
    [Abstract] [Full Text] [Related]

  • 3. Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy.
    Robelek R, Wegener J.
    Biosens Bioelectron; 2010 Jan 15; 25(5):1221-4. PubMed ID: 19818594
    [Abstract] [Full Text] [Related]

  • 4. Electrochemical impedance spectroscopic measurements of FCCP-induced change in membrane permeability of MDCK cells.
    Zhao L, Li X, Lin Y, Yang L, Yu P, Mao L.
    Analyst; 2012 May 07; 137(9):2199-204. PubMed ID: 22434126
    [Abstract] [Full Text] [Related]

  • 5. Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy.
    Chabot V, Miron Y, Charette PG, Grandbois M.
    Biosens Bioelectron; 2013 Dec 15; 50():125-31. PubMed ID: 23845690
    [Abstract] [Full Text] [Related]

  • 6. Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS.
    Polonschii C, David S, Gáspár S, Gheorghiu M, Rosu-Hamzescu M, Gheorghiu E.
    Anal Chem; 2014 Sep 02; 86(17):8553-62. PubMed ID: 25126676
    [Abstract] [Full Text] [Related]

  • 7. Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing.
    Ng SP, Wu CM, Wu SY, Ho HP, Kong SK.
    Biosens Bioelectron; 2010 Dec 15; 26(4):1593-8. PubMed ID: 20800466
    [Abstract] [Full Text] [Related]

  • 8. Real-time monitoring of amyloid fibrillation by electrical impedance spectroscopy.
    da Silva RR, de Lima SV, de Oliveira HP, de Melo CP, Frías IAM, Oliveira MDL, Andrade CAS.
    Colloids Surf B Biointerfaces; 2017 Dec 01; 160():724-731. PubMed ID: 29035820
    [Abstract] [Full Text] [Related]

  • 9. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K, Daoud J, Tabrizian M.
    Biosens Bioelectron; 2013 Nov 15; 49():348-59. PubMed ID: 23796534
    [Abstract] [Full Text] [Related]

  • 10. Biological sensing using transmission surface plasmon resonance spectroscopy.
    Lahav M, Vaskevich A, Rubinstein I.
    Langmuir; 2004 Aug 31; 20(18):7365-7. PubMed ID: 15323475
    [Abstract] [Full Text] [Related]

  • 11. Combined surface plasmon resonance and impedance spectroscopy systems for biosensing.
    Patskovsky S, Latendresse V, Dallaire AM, Doré-Mathieu L, Meunier M.
    Analyst; 2014 Feb 07; 139(3):596-602. PubMed ID: 24317183
    [Abstract] [Full Text] [Related]

  • 12. Fabrication of a protease sensor for caspase-3 activity detection based on surface plasmon resonance.
    Chen H, Mei Q, Hou Y, Zhu X, Koh K, Li X, Li G.
    Analyst; 2013 Oct 07; 138(19):5757-61. PubMed ID: 23907211
    [Abstract] [Full Text] [Related]

  • 13. Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding.
    Lu J, Wang W, Wang S, Shan X, Li J, Tao N.
    Anal Chem; 2012 Jan 03; 84(1):327-33. PubMed ID: 22122514
    [Abstract] [Full Text] [Related]

  • 14. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q, Shah N, Zhao J, Wang C, Zhao C, Liu L, Li L, Zhou F, Zheng J.
    Phys Chem Chem Phys; 2011 Sep 07; 13(33):15200-10. PubMed ID: 21769359
    [Abstract] [Full Text] [Related]

  • 15. Biosensing based on surface plasmon resonance and living cells.
    Chabot V, Cuerrier CM, Escher E, Aimez V, Grandbois M, Charette PG.
    Biosens Bioelectron; 2009 Feb 15; 24(6):1667-73. PubMed ID: 18845432
    [Abstract] [Full Text] [Related]

  • 16. Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy.
    Yashunsky V, Lirtsman V, Golosovsky M, Davidov D, Aroeti B.
    Biophys J; 2010 Dec 15; 99(12):4028-36. PubMed ID: 21156146
    [Abstract] [Full Text] [Related]

  • 17. Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes.
    Yang H, Li Z, Wei X, Huang R, Qi H, Gao Q, Li C, Zhang C.
    Talanta; 2013 Jul 15; 111():62-8. PubMed ID: 23622526
    [Abstract] [Full Text] [Related]

  • 18. From cellular cultures to cellular spheroids: is impedance spectroscopy a viable tool for monitoring multicellular spheroid (MCS) drug models?
    Alexander FA, Price DT, Bhansali S.
    IEEE Rev Biomed Eng; 2013 Jul 15; 6():63-76. PubMed ID: 23335673
    [Abstract] [Full Text] [Related]

  • 19. Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons.
    Vala M, Robelek R, Bocková M, Wegener J, Homola J.
    Biosens Bioelectron; 2013 Feb 15; 40(1):417-21. PubMed ID: 22863117
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.