These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


549 related items for PubMed ID: 24047681

  • 1. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C.
    Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S.
    Bioresour Technol; 2013 Nov; 148():196-201. PubMed ID: 24047681
    [Abstract] [Full Text] [Related]

  • 2. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
    Jeong CY, Dodla SK, Wang JJ.
    Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554
    [Abstract] [Full Text] [Related]

  • 3. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?
    Břendová K, Száková J, Lhotka M, Krulikovská T, Punčochář M, Tlustoš P.
    Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248
    [Abstract] [Full Text] [Related]

  • 4. Pyrolysis of wood to biochar: increasing yield while maintaining microporosity.
    Veksha A, McLaughlin H, Layzell DB, Hill JM.
    Bioresour Technol; 2014 Feb; 153():173-9. PubMed ID: 24365739
    [Abstract] [Full Text] [Related]

  • 5. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields.
    Park J, Lee Y, Ryu C, Park YK.
    Bioresour Technol; 2014 Mar; 155():63-70. PubMed ID: 24423650
    [Abstract] [Full Text] [Related]

  • 6. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil.
    Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM.
    J Agric Food Chem; 2011 Mar 23; 59(6):2501-10. PubMed ID: 21348519
    [Abstract] [Full Text] [Related]

  • 7. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).
    Kim KH, Kim JY, Cho TS, Choi JW.
    Bioresour Technol; 2012 Aug 23; 118():158-62. PubMed ID: 22705519
    [Abstract] [Full Text] [Related]

  • 8. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1.
    Lee Y, Eum PR, Ryu C, Park YK, Jung JH, Hyun S.
    Bioresour Technol; 2013 Feb 23; 130():345-50. PubMed ID: 23313679
    [Abstract] [Full Text] [Related]

  • 9. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H.
    PLoS One; 2014 Feb 23; 9(12):e113888. PubMed ID: 25469875
    [Abstract] [Full Text] [Related]

  • 10. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.
    Tinwala F, Mohanty P, Parmar S, Patel A, Pant KK.
    Bioresour Technol; 2015 Feb 23; 188():258-64. PubMed ID: 25770670
    [Abstract] [Full Text] [Related]

  • 11. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.
    Choi GG, Oh SJ, Lee SJ, Kim JS.
    Bioresour Technol; 2015 Feb 23; 178():99-107. PubMed ID: 25227587
    [Abstract] [Full Text] [Related]

  • 12. Physical and chemical characterization of waste wood derived biochars.
    Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K.
    Waste Manag; 2015 Feb 23; 36():256-68. PubMed ID: 25464942
    [Abstract] [Full Text] [Related]

  • 13. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate.
    Zhang J, Liu J, Liu R.
    Bioresour Technol; 2015 Jan 23; 176():288-91. PubMed ID: 25435066
    [Abstract] [Full Text] [Related]

  • 14. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis.
    Veksha A, Zaman W, Layzell DB, Hill JM.
    Bioresour Technol; 2014 Nov 23; 171():88-94. PubMed ID: 25189513
    [Abstract] [Full Text] [Related]

  • 15. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature.
    Uchimiya M, Bannon DI, Wartelle LH, Lima IM, Klasson KT.
    J Agric Food Chem; 2012 May 23; 60(20):5035-44. PubMed ID: 22548418
    [Abstract] [Full Text] [Related]

  • 16. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S, Zhu M, Fan X, Song J, Peng P, Li K, Jia W, Song H.
    Chemosphere; 2019 Mar 23; 218():624-631. PubMed ID: 30502701
    [Abstract] [Full Text] [Related]

  • 17. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil.
    Kameyama K, Miyamoto T, Shiono T, Shinogi Y.
    J Environ Qual; 2012 Mar 23; 41(4):1131-7. PubMed ID: 22751055
    [Abstract] [Full Text] [Related]

  • 18. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.
    Wang X, Zhou W, Liang G, Song D, Zhang X.
    Sci Total Environ; 2015 Dec 15; 538():137-44. PubMed ID: 26298256
    [Abstract] [Full Text] [Related]

  • 19. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils.
    Igalavithana AD, Park J, Ryu C, Lee YH, Hashimoto Y, Huang L, Kwon EE, Ok YS, Lee SS.
    Chemosphere; 2017 Jun 15; 177():157-166. PubMed ID: 28288424
    [Abstract] [Full Text] [Related]

  • 20. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment.
    Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S.
    J Environ Manage; 2014 Dec 15; 146():189-197. PubMed ID: 25173727
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.