These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 24050704
1. Intraspecific variation of recombination rate in maize. Bauer E, Falque M, Walter H, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Rincent R, Schipprack W, Altmann T, Flament P, Melchinger AE, Menz M, Moreno-González J, Ouzunova M, Revilla P, Charcosset A, Martin OC, Schön CC. Genome Biol; 2013; 14(9):R103. PubMed ID: 24050704 [Abstract] [Full Text] [Related]
2. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M. PLoS One; 2011; 6(12):e28334. PubMed ID: 22174790 [Abstract] [Full Text] [Related]
3. High segregation distortion in maize B73 x teosinte crosses. Wang G, He QQ, Xu ZK, Song RT. Genet Mol Res; 2012 Mar 19; 11(1):693-706. PubMed ID: 22535405 [Abstract] [Full Text] [Related]
4. Exploring the genetic characteristics of two recombinant inbred line populations via high-density SNP markers in maize. Pan Q, Ali F, Yang X, Li J, Yan J. PLoS One; 2012 Mar 19; 7(12):e52777. PubMed ID: 23300772 [Abstract] [Full Text] [Related]
5. Genetic properties of the maize nested association mapping population. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES. Science; 2009 Aug 07; 325(5941):737-40. PubMed ID: 19661427 [Abstract] [Full Text] [Related]
6. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation. Figueroa DM, Bass HW. Chromosome Res; 2012 May 07; 20(4):363-80. PubMed ID: 22588802 [Abstract] [Full Text] [Related]
7. A first-generation haplotype map of maize. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES. Science; 2009 Nov 20; 326(5956):1115-7. PubMed ID: 19965431 [Abstract] [Full Text] [Related]
8. High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. Chancerel E, Lamy JB, Lesur I, Noirot C, Klopp C, Ehrenmann F, Boury C, Provost GL, Label P, Lalanne C, Léger V, Salin F, Gion JM, Plomion C. BMC Biol; 2013 Apr 18; 11():50. PubMed ID: 23597128 [Abstract] [Full Text] [Related]
9. Genome-wide recombination dynamics are associated with phenotypic variation in maize. Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer GJ, Li J, Yan J. New Phytol; 2016 May 18; 210(3):1083-94. PubMed ID: 26720856 [Abstract] [Full Text] [Related]
10. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z, Zhang C, Zhou Y, Hao Z, Wang Z, Zeng X, Di H, Li M, Zhang D, Yong H, Zhang S, Weng J, Li X. BMC Genomics; 2016 Mar 03; 17():178. PubMed ID: 26940065 [Abstract] [Full Text] [Related]
11. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers. Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Li Y, Wang T. Theor Appl Genet; 2016 Sep 03; 129(9):1775-84. PubMed ID: 27379519 [Abstract] [Full Text] [Related]
12. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize. Li C, Li Y, Bradbury PJ, Wu X, Shi Y, Song Y, Zhang D, Rodgers-Melnick E, Buckler ES, Zhang Z, Li Y, Wang T. BMC Biol; 2015 Sep 21; 13():78. PubMed ID: 26390990 [Abstract] [Full Text] [Related]
13. Unraveling the genetic architecture of subtropical maize (Zea mays L.) lines to assess their utility in breeding programs. Thirunavukkarasu N, Hossain F, Shiriga K, Mittal S, Arora K, Rathore A, Mohan S, Shah T, Sharma R, Namratha PM, Mithra AS, Mohapatra T, Gupta HS. BMC Genomics; 2013 Dec 13; 14():877. PubMed ID: 24330649 [Abstract] [Full Text] [Related]
15. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Schipprack W, Flament P, Melchinger AE, Menz M, Moreno-González J, Ouzunova M, Charcosset A, Schön CC, Moreau L. Genetics; 2014 Dec 13; 198(4):1717-34. PubMed ID: 25271305 [Abstract] [Full Text] [Related]
16. Linkage mapping of 1454 new maize candidate gene Loci. Falque M, Décousset L, Dervins D, Jacob AM, Joets J, Martinant JP, Raffoux X, Ribière N, Ridel C, Samson D, Charcosset A, Murigneux A. Genetics; 2005 Aug 13; 170(4):1957-66. PubMed ID: 15937132 [Abstract] [Full Text] [Related]
17. Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Gouesnard B, Negro S, Laffray A, Glaubitz J, Melchinger A, Revilla P, Moreno-Gonzalez J, Madur D, Combes V, Tollon-Cordet C, Laborde J, Kermarrec D, Bauland C, Moreau L, Charcosset A, Nicolas S. Theor Appl Genet; 2017 Oct 13; 130(10):2165-2189. PubMed ID: 28780587 [Abstract] [Full Text] [Related]