These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
264 related items for PubMed ID: 24051867
1. An easily removable stereo-dictating group for enantioselective synthesis of propargylic amines. Fan W, Ma S. Chem Commun (Camb); 2013 Oct 03; 49(86):10175-7. PubMed ID: 24051867 [Abstract] [Full Text] [Related]
2. Copper-catalyzed enantioselective three-component synthesis of optically active propargylamines from aldehydes, amines, and aliphatic alkynes. Nakamura S, Ohara M, Nakamura Y, Shibata N, Toru T. Chemistry; 2010 Feb 22; 16(8):2360-2. PubMed ID: 20108286 [No Abstract] [Full Text] [Related]
3. Direct enantioselective three-component synthesis of optically active propargylamines in water. Ohara M, Hara Y, Ohnuki T, Nakamura S. Chemistry; 2014 Jul 14; 20(29):8848-51. PubMed ID: 24919989 [Abstract] [Full Text] [Related]
4. An efficient synthesis of propargylamines via C-H activation catalyzed by copper(I) in ionic liquids. Park SB, Alper H. Chem Commun (Camb); 2005 Mar 14; (10):1315-7. PubMed ID: 15742063 [Abstract] [Full Text] [Related]
5. Copper(I) halide promoted diastereoselective synthesis of chiral propargylamines and chiral allenes using 2-dialkylaminomethylpyrrolidine, aldehydes, and 1-alkynes. Gurubrahamam R, Periasamy M. J Org Chem; 2013 Feb 15; 78(4):1463-70. PubMed ID: 23320792 [Abstract] [Full Text] [Related]
6. The Asymmetric A³(Aldehyde⁻Alkyne⁻Amine) Coupling: Highly Enantioselective Access to Propargylamines. Mo JN, Su J, Zhao J. Molecules; 2019 Mar 28; 24(7):. PubMed ID: 30925732 [Abstract] [Full Text] [Related]
7. Practical highly enantioselective synthesis of propargylamines through a copper-catalyzed one-pot three-component condensation reaction. Gommermann N, Knochel P. Chemistry; 2006 May 24; 12(16):4380-92. PubMed ID: 16557623 [Abstract] [Full Text] [Related]
8. Unprecedented Cu(I)-catalyzed microwave-assisted three-component coupling of a ketone, an alkyne, and a primary amine. Pereshivko OP, Peshkov VA, Van der Eycken EV. Org Lett; 2010 Jun 04; 12(11):2638-41. PubMed ID: 20441203 [Abstract] [Full Text] [Related]
9. Synthesis of enantiomerically enriched propargylamines by copper-catalyzed addition of alkynes to enamines. Koradin C, Gommermann N, Polborn K, Knochel P. Chemistry; 2003 Jun 16; 9(12):2797-2811. PubMed ID: 12866545 [Abstract] [Full Text] [Related]
10. CuBr for KA(2) reaction: en route to propargylic amines bearing a quaternary carbon center. Tang X, Kuang J, Ma S. Chem Commun (Camb); 2013 Oct 11; 49(79):8976-8. PubMed ID: 23962962 [Abstract] [Full Text] [Related]
11. A simple method for the preparation of propargylamines using molecular sieve modified with copper(II). Fodor A, Kiss A, Debreczeni N, Hell Z, Gresits I. Org Biomol Chem; 2010 Oct 21; 8(20):4575-81. PubMed ID: 20740243 [Abstract] [Full Text] [Related]
12. Highly enantioselective access to primary propargylamines: 4-piperidinone as a convenient protecting group. Aschwanden P, Stephenson CR, Carreira EM. Org Lett; 2006 May 25; 8(11):2437-40. PubMed ID: 16706545 [Abstract] [Full Text] [Related]
13. Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts. Chen X, Chen T, Zhou Y, Au CT, Han LB, Yin SF. Org Biomol Chem; 2014 Jan 14; 12(2):247-50. PubMed ID: 24264798 [Abstract] [Full Text] [Related]
14. Bimetallic enantioselective approach to axially chiral allenes. Lü R, Ye J, Cao T, Chen B, Fan W, Lin W, Liu J, Luo H, Miao B, Ni S, Tang X, Wang N, Wang Y, Xie X, Yu Q, Yuan W, Zhang W, Zhu C, Ma S. Org Lett; 2013 May 03; 15(9):2254-7. PubMed ID: 23607897 [Abstract] [Full Text] [Related]
15. Iron(III)-catalyzed and air-mediated tandem reaction of aldehydes, alkynes and amines: an efficient approach to substituted quinolines. Cao K, Zhang FM, Tu YQ, Zhuo XT, Fan CA. Chemistry; 2009 Jun 22; 15(26):6332-4. PubMed ID: 19472236 [Abstract] [Full Text] [Related]
16. Efficient iron(III)-catalyzed three-component coupling reaction of alkynes, CH2Cl2 and amines to propargylamines. Gao J, Song QW, He LN, Yang ZZ, Dou XY. Chem Commun (Camb); 2012 Feb 14; 48(14):2024-6. PubMed ID: 22234426 [Abstract] [Full Text] [Related]
17. Chemoselective C-H bond activation: ligand and solvent free iron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes. Reaction scope and mechanism. Volla CM, Vogel P. Org Lett; 2009 Apr 16; 11(8):1701-4. PubMed ID: 19296636 [Abstract] [Full Text] [Related]
18. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles. Aguilar D, Contel M, Urriolabeitia EP. Chemistry; 2010 Aug 09; 16(30):9287-96. PubMed ID: 20583055 [Abstract] [Full Text] [Related]
19. Synthesis of tertiary propargylamines via a rationally designed multicomponent reaction of primary amines, formaldehyde, arylboronic acids and alkynes. Wang J, Shen Q, Li P, Peng Y, Song G. Org Biomol Chem; 2014 Aug 14; 12(30):5597-600. PubMed ID: 24969221 [Abstract] [Full Text] [Related]
20. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. González-Béjar M, Peters K, Hallett-Tapley GL, Grenier M, Scaiano JC. Chem Commun (Camb); 2013 Feb 28; 49(17):1732-4. PubMed ID: 23340772 [Abstract] [Full Text] [Related] Page: [Next] [New Search]