These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 24058160

  • 1. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism.
    Nardozza S, Boldingh HL, Osorio S, Höhne M, Wohlers M, Gleave AP, MacRae EA, Richardson AC, Atkinson RG, Sulpice R, Fernie AR, Clearwater MJ.
    J Exp Bot; 2013 Nov; 64(16):5049-63. PubMed ID: 24058160
    [Abstract] [Full Text] [Related]

  • 2. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit.
    Chen C, Yuan Y, Zhang C, Li H, Ma F, Li M.
    Plant Sci; 2017 Feb; 255():40-50. PubMed ID: 28131340
    [Abstract] [Full Text] [Related]

  • 3. A biophysical model of kiwifruit (Actinidia deliciosa) berry development.
    Hall AJ, Minchin PE, Clearwater MJ, Génard M.
    J Exp Bot; 2013 Dec; 64(18):5473-83. PubMed ID: 24123250
    [Abstract] [Full Text] [Related]

  • 4. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis).
    Wu L, Lan J, Xiang X, Xiang H, Jin Z, Khan S, Liu Y.
    PLoS One; 2020 Dec; 15(10):e0240355. PubMed ID: 33044982
    [Abstract] [Full Text] [Related]

  • 5. Gene Expression Profiling of Development and Anthocyanin Accumulation in Kiwifruit (Actinidia chinensis) Based on Transcriptome Sequencing.
    Li W, Liu Y, Zeng S, Xiao G, Wang G, Wang Y, Peng M, Huang H.
    PLoS One; 2015 Dec; 10(8):e0136439. PubMed ID: 26301713
    [Abstract] [Full Text] [Related]

  • 6. Proteomics and Metabolomics Reveal the Regulatory Pathways of Ripening and Quality in Post-Harvest Kiwifruits.
    Tian X, Zhu L, Yang N, Song J, Zhao H, Zhang J, Ma F, Li M.
    J Agric Food Chem; 2021 Jan 20; 69(2):824-835. PubMed ID: 33410682
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.
    Yativ M, Harary I, Wolf S.
    J Plant Physiol; 2010 May 15; 167(8):589-96. PubMed ID: 20036442
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Transcriptome Analysis Identifies a Zinc Finger Protein Regulating Starch Degradation in Kiwifruit.
    Zhang AD, Wang WQ, Tong Y, Li MJ, Grierson D, Ferguson I, Chen KS, Yin XR.
    Plant Physiol; 2018 Oct 15; 178(2):850-863. PubMed ID: 30135096
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit.
    Ampomah-Dwamena C, McGhie T, Wibisono R, Montefiori M, Hellens RP, Allan AC.
    J Exp Bot; 2009 Oct 15; 60(13):3765-79. PubMed ID: 19574250
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.