These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. De novo design of a trans-β-N-acetylglucosaminidase activity from a GH1 β-glycosidase by mechanism engineering. André-Miral C, Koné FM, Solleux C, Grandjean C, Dion M, Tran V, Tellier C. Glycobiology; 2015 Apr; 25(4):394-402. PubMed ID: 25378480 [Abstract] [Full Text] [Related]
7. LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis. Deli A, Koutsioulis D, Fadouloglou VE, Spiliotopoulou P, Balomenou S, Arnaouteli S, Tzanodaskalaki M, Mavromatis K, Kokkinidis M, Bouriotis V. FEBS J; 2010 Jul; 277(13):2740-53. PubMed ID: 20491912 [Abstract] [Full Text] [Related]
11. Identification of the active site nucleophile in the thermostable beta-glycosidase from the archaeon Sulfolobus solfataricus expressed in Escherichia coli. Febbraio F, Barone R, D'Auria S, Rossi M, Nucci R, Piccialli G, De Napoli L, Orrù S, Pucci P. Biochemistry; 1997 Mar 18; 36(11):3068-75. PubMed ID: 9115982 [Abstract] [Full Text] [Related]
12. Chitooligosaccharides are converted to N-acetylglucosamine by N-acetyl-β-hexosaminidase from Stenotrophomonas maltophilia. Katta S, Ankati S, Podile AR. FEMS Microbiol Lett; 2013 Nov 18; 348(1):19-25. PubMed ID: 23965017 [Abstract] [Full Text] [Related]
13. Discovery of a putative acetoin dehydrogenase complex in the hyperthermophilic archaeon Sulfolobus solfataricus. Payne KA, Hough DW, Danson MJ. FEBS Lett; 2010 Mar 19; 584(6):1231-4. PubMed ID: 20171216 [Abstract] [Full Text] [Related]
14. E. coli sabotages the in vivo production of O-linked β-N-acetylglucosamine-modified proteins. Goodwin OY, Thomasson MS, Lin AJ, Sweeney MM, Macnaughtan MA. J Biotechnol; 2013 Dec 19; 168(4):315-23. PubMed ID: 24140293 [Abstract] [Full Text] [Related]
15. Enzymatic characterization and molecular modeling of an evolutionarily interesting fungal β-N-acetylhexosaminidase. Ryšlavá H, Kalendová A, Doubnerová V, Skočdopol P, Kumar V, Kukačka Z, Pompach P, Vaněk O, Slámová K, Bojarová P, Kulik N, Ettrich R, Křen V, Bezouška K. FEBS J; 2011 Jul 19; 278(14):2469-84. PubMed ID: 21564548 [Abstract] [Full Text] [Related]
16. Characterization of a bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo- and endoglucanase activity. Han SJ, Yoo YJ, Kang HS. J Biol Chem; 1995 Oct 27; 270(43):26012-9. PubMed ID: 7592793 [Abstract] [Full Text] [Related]
17. Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: insights into mechanisms of protein stabilization. Porcelli M, Peluso I, Marabotti A, Facchiano A, Cacciapuoti G. Arch Biochem Biophys; 2009 Mar 01; 483(1):55-65. PubMed ID: 19121283 [Abstract] [Full Text] [Related]
19. Heterologous expression and characterization of an N-acetyl-β-D-hexosaminidase from Lactococcus lactis ssp. lactis IL1403. Nguyen HA, Nguyen TH, Křen V, Eijsink VG, Haltrich D, Peterbauer CK. J Agric Food Chem; 2012 Mar 28; 60(12):3275-81. PubMed ID: 22356128 [Abstract] [Full Text] [Related]
20. Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. Ernst HA, Lo Leggio L, Willemoës M, Leonard G, Blum P, Larsen S. J Mol Biol; 2006 May 12; 358(4):1106-24. PubMed ID: 16580018 [Abstract] [Full Text] [Related] Page: [Next] [New Search]