These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry. Purkarthofer T, Skranc W, Schuster C, Griengl H. Appl Microbiol Biotechnol; 2007 Aug 15; 76(2):309-20. PubMed ID: 17607575 [Abstract] [Full Text] [Related]
7. Hydroxynitrile lyases from prunus seeds in the preparation of cyanohydrins. Solís A, Solís-Oba M, Pérez HI, Manjarrez N, Cassani J. Biosci Biotechnol Biochem; 2011 Aug 15; 75(5):985-6. PubMed ID: 21597172 [Abstract] [Full Text] [Related]
8. The cyanogenic syndrome in rubber tree Hevea brasiliensis: tissue-damage-dependent activation of linamarase and hydroxynitrile lyase accelerates hydrogen cyanide release. Kadow D, Voß K, Selmar D, Lieberei R. Ann Bot; 2012 Jun 15; 109(7):1253-62. PubMed ID: 22451599 [Abstract] [Full Text] [Related]
10. Studies on the kinetics of cyanohydrin synthesis and cleavage by the the flavoenzyme oxynitrilase. Jorns MS. Biochim Biophys Acta; 1980 Jun 15; 613(1):203-9. PubMed ID: 6246955 [Abstract] [Full Text] [Related]
11. A full picture of enzymatic catalysis by hydroxynitrile lyases from Hevea brasiliensis: protonation dependent reaction steps and residue-gated movement of the substrate and the product. Zhao Y, Chen N, Mo Y, Cao Z. Phys Chem Chem Phys; 2014 Dec 28; 16(48):26864-75. PubMed ID: 25375265 [Abstract] [Full Text] [Related]
12. Hydroxynitrile lyases in stereoselective catalysis. Effenberger F, Förster S, Wajant H. Curr Opin Biotechnol; 2000 Dec 28; 11(6):532-9. PubMed ID: 11102786 [Abstract] [Full Text] [Related]
13. The synthesis of chiral cyanohydrins by oxynitrilases. Griengl H, Schwab H, Fechter M. Trends Biotechnol; 2000 Jun 28; 18(6):252-6. PubMed ID: 10802560 [Abstract] [Full Text] [Related]
14. Substrate binding in the FAD-dependent hydroxynitrile lyase from almond provides insight into the mechanism of cyanohydrin formation and explains the absence of dehydrogenation activity. Dreveny I, Andryushkova AS, Glieder A, Gruber K, Kratky C. Biochemistry; 2009 Apr 21; 48(15):3370-7. PubMed ID: 19256550 [Abstract] [Full Text] [Related]
15. Mini-review: recent developments in hydroxynitrile lyases for industrial biotechnology. Lanfranchi E, Steiner K, Glieder A, Hajnal I, Sheldon RA, van Pelt S, Winkler M. Recent Pat Biotechnol; 2013 Dec 21; 7(3):197-206. PubMed ID: 24182322 [Abstract] [Full Text] [Related]
18. Hydroxynitrile lyases from cyanogenic millipedes: molecular cloning, heterologous expression, and whole-cell biocatalysis for the production of (R)-mandelonitrile. Yamaguchi T, Nuylert A, Ina A, Tanabe T, Asano Y. Sci Rep; 2018 Feb 14; 8(1):3051. PubMed ID: 29445093 [Abstract] [Full Text] [Related]
19. Identification of potential active-site residues in the hydroxynitrile lyase from Manihot esculenta by site-directed mutagenesis. Wajant H, Pfizenmaier K. J Biol Chem; 1996 Oct 18; 271(42):25830-4. PubMed ID: 8824213 [Abstract] [Full Text] [Related]
20. Diversification of an ancient theme: hydroxynitrile glucosides. Bjarnholt N, Rook F, Motawia MS, Cornett C, Jørgensen C, Olsen CE, Jaroszewski JW, Bak S, Møller BL. Phytochemistry; 2008 May 18; 69(7):1507-16. PubMed ID: 18342345 [Abstract] [Full Text] [Related] Page: [Next] [New Search]