These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 24068197

  • 1. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors.
    Mainz R, Walker BC, Schmidt SS, Zander O, Weber A, Rodriguez-Alvarez H, Just J, Klaus M, Agrawal R, Unold T.
    Phys Chem Chem Phys; 2013 Nov 07; 15(41):18281-9. PubMed ID: 24068197
    [Abstract] [Full Text] [Related]

  • 2. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure.
    Yao L, Ao J, Jeng MJ, Bi J, Gao S, He Q, Zhou Z, Sun G, Sun Y, Chang LB, Chen JW.
    Nanoscale Res Lett; 2014 Nov 07; 9(1):678. PubMed ID: 25593559
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.
    Li J, Wang H, Wu L, Chen C, Zhou Z, Liu F, Sun Y, Han J, Zhang Y.
    ACS Appl Mater Interfaces; 2016 Apr 27; 8(16):10283-92. PubMed ID: 27058738
    [Abstract] [Full Text] [Related]

  • 5. Cu2ZnSnSe4 Thin Film Solar Cell with Depth Gradient Composition Prepared by Selenization of Sputtered Novel Precursors.
    Lai FI, Yang JF, Chen WC, Kuo SY.
    ACS Appl Mater Interfaces; 2017 Nov 22; 9(46):40224-40234. PubMed ID: 29072439
    [Abstract] [Full Text] [Related]

  • 6. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.
    Yang Y, Wang G, Zhao W, Tian Q, Huang L, Pan D.
    ACS Appl Mater Interfaces; 2015 Jan 14; 7(1):460-4. PubMed ID: 25494493
    [Abstract] [Full Text] [Related]

  • 7. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency.
    Ahn S, Choi YJ, Kim K, Eo YJ, Cho A, Gwak J, Yun JH, Shin K, Ahn SK, Yoon K.
    ChemSusChem; 2013 Jul 14; 6(7):1282-7. PubMed ID: 23681958
    [Abstract] [Full Text] [Related]

  • 8. Phase-Separation-Induced Crystal Growth for Large-Grained Cu2ZnSn(S,Se)4 Thin Film.
    Huang L, Wei S, Pan D.
    ACS Appl Mater Interfaces; 2018 Oct 17; 10(41):35069-35078. PubMed ID: 30247020
    [Abstract] [Full Text] [Related]

  • 9. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.
    Buffière M, Brammertz G, Sahayaraj S, Batuk M, Khelifi S, Mangin D, El Mel AA, Arzel L, Hadermann J, Meuris M, Poortmans J.
    ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14690-8. PubMed ID: 26039042
    [Abstract] [Full Text] [Related]

  • 10. Investigation into the Selenization Mechanisms of Wurtzite CZTS Nanorods.
    Bree G, Coughlan C, Geaney H, Ryan KM.
    ACS Appl Mater Interfaces; 2018 Feb 28; 10(8):7117-7125. PubMed ID: 29392941
    [Abstract] [Full Text] [Related]

  • 11. CuInSe2 (CIS) thin films prepared from amorphous Cu-In-Se nanoparticle precursors for solar cell application.
    Ahn S, Kim K, Cho A, Gwak J, Yun JH, Shin K, Ahn S, Yoon K.
    ACS Appl Mater Interfaces; 2012 Mar 28; 4(3):1530-6. PubMed ID: 22391391
    [Abstract] [Full Text] [Related]

  • 12. Nanoparticle-induced grain growth of carbon-free solution-processed CuIn(S,Se)2 solar cell with 6% efficiency.
    Cai Y, Ho JC, Batabyal SK, Liu W, Sun Y, Mhaisalkar SG, Wong LH.
    ACS Appl Mater Interfaces; 2013 Mar 13; 5(5):1533-7. PubMed ID: 23428066
    [Abstract] [Full Text] [Related]

  • 13. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.
    Jeon JO, Lee KD, Seul Oh L, Seo SW, Lee DK, Kim H, Jeong JH, Ko MJ, Kim B, Son HJ, Kim JY.
    ChemSusChem; 2014 Apr 13; 7(4):1073-7. PubMed ID: 24692285
    [Abstract] [Full Text] [Related]

  • 14. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source.
    Zhao W, Wang G, Tian Q, Yang Y, Huang L, Pan D.
    ACS Appl Mater Interfaces; 2014 Aug 13; 6(15):12650-5. PubMed ID: 25000474
    [Abstract] [Full Text] [Related]

  • 15. Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn(S,Se)4 device.
    Hsu WC, Zhou H, Luo S, Song TB, Hsieh YT, Duan HS, Ye S, Yang W, Hsu CJ, Jiang C, Bob B, Yang Y.
    ACS Nano; 2014 Sep 23; 8(9):9164-72. PubMed ID: 25106060
    [Abstract] [Full Text] [Related]

  • 16. Microenvironment Created by SnSe2 Vapor and Pre-Selenization to Stabilize the Surface and Back Contact in Kesterite Solar Cells.
    Guo J, Mao Y, Ao J, Han Y, Cao C, Liu F, Bi J, Wang S, Zhang Y.
    Small; 2022 Nov 23; 18(47):e2203354. PubMed ID: 36180408
    [Abstract] [Full Text] [Related]

  • 17. Single-step sulfo-selenization method to synthesize Cu2ZnSn(S(y)Se(1-y))4 absorbers from metallic stack precursors.
    Fairbrother A, Fontané X, Izquierdo-Roca V, Espindola-Rodriguez M, López-Marino S, Placidi M, López-García J, Pérez-Rodríguez A, Saucedo E.
    Chemphyschem; 2013 Jun 24; 14(9):1836-43. PubMed ID: 23576489
    [Abstract] [Full Text] [Related]

  • 18. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M, Agrawal R, Hillhouse HW.
    J Am Chem Soc; 2011 Nov 02; 133(43):17239-47. PubMed ID: 21879767
    [Abstract] [Full Text] [Related]

  • 19. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.
    Jin C, Ramasamy P, Kim J.
    Dalton Trans; 2014 Jul 07; 43(25):9481-5. PubMed ID: 24823944
    [Abstract] [Full Text] [Related]

  • 20. Tailoring Li assisted CZTSe film growth under controllable selenium partial pressure and solar cells.
    Liu Y, Zhang H, Meng R, Dong J, Xu X, Zhang J, Zhang Y.
    J Chem Phys; 2024 Sep 28; 161(12):. PubMed ID: 39324533
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.