These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
647 related items for PubMed ID: 24070298
1. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: a molecular dynamics study. Liu H, Maginn E. J Chem Phys; 2013 Sep 21; 139(11):114508. PubMed ID: 24070298 [Abstract] [Full Text] [Related]
2. Physicochemical properties of three ionic liquids containing a tetracyanoborate anion and their lithium salt mixtures. Sanchez-Ramirez N, Martins VL, Ando RA, Camilo FF, Urahata SM, Ribeiro MC, Torresi RM. J Phys Chem B; 2014 Jul 24; 118(29):8772-81. PubMed ID: 24992482 [Abstract] [Full Text] [Related]
3. Li+ solvation and transport properties in ionic liquid/lithium salt mixtures: a molecular dynamics simulation study. Li Z, Smith GD, Bedrov D. J Phys Chem B; 2012 Oct 25; 116(42):12801-9. PubMed ID: 22978679 [Abstract] [Full Text] [Related]
4. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids. Borodin O, Smith GD, Henderson W. J Phys Chem B; 2006 Aug 31; 110(34):16879-86. PubMed ID: 16927976 [Abstract] [Full Text] [Related]
5. Structure and Transport Properties of Lithium-Doped Aprotic and Protic Ionic Liquid Electrolytes: Insights from Molecular Dynamics Simulations. Nasrabadi AT, Ganesan V. J Phys Chem B; 2019 Jul 05; 123(26):5588-5600. PubMed ID: 31244094 [Abstract] [Full Text] [Related]
6. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability. Haskins JB, Bauschlicher CW, Lawson JW. J Phys Chem B; 2015 Nov 19; 119(46):14705-19. PubMed ID: 26505208 [Abstract] [Full Text] [Related]
7. Electrochemistry of magnesium electrolytes in ionic liquids for secondary batteries. Vardar G, Sleightholme AE, Naruse J, Hiramatsu H, Siegel DJ, Monroe CW. ACS Appl Mater Interfaces; 2014 Oct 22; 6(20):18033-9. PubMed ID: 25248147 [Abstract] [Full Text] [Related]
9. Two phosphonium ionic liquids with high Li(+) transport number. Martins VL, Sanchez-Ramirez N, Ribeiro MC, Torresi RM. Phys Chem Chem Phys; 2015 Sep 21; 17(35):23041-51. PubMed ID: 26272339 [Abstract] [Full Text] [Related]
10. Structure and dynamics of uranyl(VI) and plutonyl(VI) cations in ionic liquid/water mixtures via molecular dynamics simulations. Maerzke KA, Goff GS, Runde WH, Schneider WF, Maginn EJ. J Phys Chem B; 2013 Sep 19; 117(37):10852-68. PubMed ID: 23964666 [Abstract] [Full Text] [Related]
11. Ionic liquid-in-oil microemulsions composed of double chain surface active ionic liquid as a surfactant: temperature dependent solvent and rotational relaxation dynamics of coumarin-153 in [Py][TF2N]/[C4mim][AOT]/benzene microemulsions. Rao VG, Mandal S, Ghosh S, Banerjee C, Sarkar N. J Phys Chem B; 2012 Jul 19; 116(28):8210-21. PubMed ID: 22721252 [Abstract] [Full Text] [Related]
12. MD simulations of the formation of stable clusters in mixtures of alkaline salts and imidazolium-based ionic liquids. Méndez-Morales T, Carrete J, Bouzón-Capelo S, Pérez-Rodríguez M, Cabeza Ó, Gallego LJ, Varela LM. J Phys Chem B; 2013 Mar 21; 117(11):3207-20. PubMed ID: 23480174 [Abstract] [Full Text] [Related]
13. Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. Borodin O, Smith GD, Geiculescu O, Creager SE, Hallac B, DesMarteau D. J Phys Chem B; 2006 Nov 30; 110(47):24266-74. PubMed ID: 17125400 [Abstract] [Full Text] [Related]
14. A joint theoretical/experimental study of the structure, dynamics, and Li+ transport in bis([tri]fluoro[methane]sulfonyl)imide [T]FSI-based ionic liquids. Solano CJ, Jeremias S, Paillard E, Beljonne D, Lazzaroni R. J Chem Phys; 2013 Jul 21; 139(3):034502. PubMed ID: 23883042 [Abstract] [Full Text] [Related]
15. On the coordination of Zn2+ ion in Tf2N- based ionic liquids: structural and dynamic properties depending on the nature of the organic cation. Sessa F, Migliorati V, Serva A, Lapi A, Aquilanti G, Mancini G, D'Angelo P. Phys Chem Chem Phys; 2018 Jan 24; 20(4):2662-2675. PubMed ID: 29319089 [Abstract] [Full Text] [Related]
16. Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: a molecular dynamics simulation study. Li Z, Borodin O, Smith GD, Bedrov D. J Phys Chem B; 2015 Feb 19; 119(7):3085-96. PubMed ID: 25592777 [Abstract] [Full Text] [Related]
17. Influence of the water content on the structure and physicochemical properties of an ionic liquid and its Li+ mixture. Martins VL, Nicolau BG, Urahata SM, Ribeiro MC, Torresi RM. J Phys Chem B; 2013 Jul 25; 117(29):8782-92. PubMed ID: 23815781 [Abstract] [Full Text] [Related]
18. The influence of lithium cations on dynamics and structure of room temperature ionic liquids. Lawler C, Fayer MD. J Phys Chem B; 2013 Aug 22; 117(33):9768-74. PubMed ID: 23879633 [Abstract] [Full Text] [Related]
19. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface. Lísal M, Izák P. J Chem Phys; 2013 Jul 07; 139(1):014704. PubMed ID: 23822317 [Abstract] [Full Text] [Related]
20. Alkali cation extraction by calix[4]crown-6 to room-temperature ionic liquids. The effect of solvent anion and humidity investigated by molecular dynamics simulations. Sieffert N, Wipff G. J Phys Chem A; 2006 Jan 26; 110(3):1106-17. PubMed ID: 16420015 [Abstract] [Full Text] [Related] Page: [Next] [New Search]