These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 24073211
21. Action Spectrum of Photoinhibition in the Diatom Phaeodactylum tricornutum. Havurinne V, Tyystjärvi E. Plant Cell Physiol; 2017 Dec 01; 58(12):2217-2225. PubMed ID: 29059446 [Abstract] [Full Text] [Related]
22. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. Takahashi F. J Plant Res; 2016 Mar 01; 129(2):189-97. PubMed ID: 26781435 [Abstract] [Full Text] [Related]
23. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Taddei L, Chukhutsina VU, Lepetit B, Stella GR, Bassi R, van Amerongen H, Bouly JP, Jaubert M, Finazzi G, Falciatore A. Plant Physiol; 2018 Jul 01; 177(3):953-965. PubMed ID: 29773581 [Abstract] [Full Text] [Related]
24. Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Herbstová M, Bína D, Kaňa R, Vácha F, Litvín R. Sci Rep; 2017 Sep 20; 7(1):11976. PubMed ID: 28931902 [Abstract] [Full Text] [Related]
25. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. Wagner H, Jakob T, Lavaud J, Wilhelm C. Photosynth Res; 2016 May 20; 128(2):151-61. PubMed ID: 26650230 [Abstract] [Full Text] [Related]
26. Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. Oka K, Ueno Y, Yokono M, Shen JR, Nagao R, Akimoto S. Photosynth Res; 2020 Dec 20; 146(1-3):227-234. PubMed ID: 31965467 [Abstract] [Full Text] [Related]
27. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata. Brunet C, Chandrasekaran R, Barra L, Giovagnetti V, Corato F, Ruban AV. PLoS One; 2014 Dec 20; 9(1):e87015. PubMed ID: 24475212 [Abstract] [Full Text] [Related]
28. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Ewe D, Tachibana M, Kikutani S, Gruber A, Río Bártulos C, Konert G, Kaplan A, Matsuda Y, Kroth PG. Photosynth Res; 2018 Aug 20; 137(2):263-280. PubMed ID: 29572588 [Abstract] [Full Text] [Related]
29. Photosynthesis acclimation under severely fluctuating light conditions allows faster growth of diatoms compared with dinoflagellates. Zhou L, Wu S, Gu W, Wang L, Wang J, Gao S, Wang G. BMC Plant Biol; 2021 Apr 01; 21(1):164. PubMed ID: 33794787 [Abstract] [Full Text] [Related]
30. Differential Regulation of Duplicate Light-Dependent Protochlorophyllide Oxidoreductases in the Diatom Phaeodactylum tricornutum. Hunsperger HM, Ford CJ, Miller JS, Cattolico RA. PLoS One; 2016 Apr 01; 11(7):e0158614. PubMed ID: 27367227 [Abstract] [Full Text] [Related]
31. Response of CO2-starved diatom Phaeodactylum tricornutum to light intensity transition. Heydarizadeh P, Boureba W, Zahedi M, Huang B, Moreau B, Lukomska E, Couzinet-Mossion A, Wielgosz-Collin G, Martin-Jézéquel V, Bougaran G, Marchand J, Schoefs B. Philos Trans R Soc Lond B Biol Sci; 2017 Sep 05; 372(1728):. PubMed ID: 28717022 [Abstract] [Full Text] [Related]
32. HSP70A promotes the photosynthetic activity of marine diatom Phaeodactylum tricornutum under high temperature. Yang W, Gao S, Bao M, Li X, Liu Z, Wang G. Plant J; 2024 Jun 05; 118(6):2085-2093. PubMed ID: 38525917 [Abstract] [Full Text] [Related]
33. Photoacclimation in a tropical population of Cladophora glomerata (L.) Kützing 1843 (Chlorophyta) from southeastern Brazil. Bautista AI, Necchi-Júnior O. Braz J Biol; 2008 Feb 05; 68(1):129-36. PubMed ID: 18470387 [Abstract] [Full Text] [Related]
34. Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. Domingues N, Matos AR, Marques da Silva J, Cartaxana P. PLoS One; 2012 Feb 05; 7(6):e38162. PubMed ID: 22675519 [Abstract] [Full Text] [Related]
35. Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. Nagao R, Ueno Y, Yokono M, Shen JR, Akimoto S. Photosynth Res; 2019 Sep 05; 141(3):355-365. PubMed ID: 30993504 [Abstract] [Full Text] [Related]
36. The role of ultraviolet-adaptation of a marine diatom in photoenhanced toxicity of acridine. Wiegman S, Barranguet C, Spijkerman E, Kraak MH, Admiraal W. Environ Toxicol Chem; 2003 Mar 05; 22(3):591-8. PubMed ID: 12627647 [Abstract] [Full Text] [Related]
38. Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors. Rodolfi L, Biondi N, Guccione A, Bassi N, D'Ottavio M, Arganaraz G, Tredici MR. Biotechnol Bioeng; 2017 Oct 05; 114(10):2204-2210. PubMed ID: 28627710 [Abstract] [Full Text] [Related]
39. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J. Plant Physiol; 2013 Feb 05; 161(2):853-65. PubMed ID: 23209128 [Abstract] [Full Text] [Related]
40. An Optogenetic Tool for Induced Protein Stabilization Based on the Phaeodactylum tricornutum Aureochrome 1a Light-Oxygen-Voltage Domain. Hepp S, Trauth J, Hasenjäger S, Bezold F, Essen LO, Taxis C. J Mol Biol; 2020 Mar 27; 432(7):1880-1900. PubMed ID: 32105734 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]