These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


714 related items for PubMed ID: 24078495

  • 1. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration.
    Dirckx N, Van Hul M, Maes C.
    Birth Defects Res C Embryo Today; 2013 Sep; 99(3):170-91. PubMed ID: 24078495
    [Abstract] [Full Text] [Related]

  • 2. [Recruitment of osteogenic cells to bone formation sites during development and fracture repair - German Version].
    Böhm AM, Dirckx N, Maes C.
    Z Rheumatol; 2016 Apr; 75(3):316-21. PubMed ID: 27003859
    [Abstract] [Full Text] [Related]

  • 3. Role and regulation of vascularization processes in endochondral bones.
    Maes C.
    Calcif Tissue Int; 2013 Apr; 92(4):307-23. PubMed ID: 23292135
    [Abstract] [Full Text] [Related]

  • 4. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering.
    Yang X, Tare RS, Partridge KA, Roach HI, Clarke NM, Howdle SM, Shakesheff KM, Oreffo RO.
    J Bone Miner Res; 2003 Jan; 18(1):47-57. PubMed ID: 12510805
    [Abstract] [Full Text] [Related]

  • 5. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation.
    Li G, Peng H, Corsi K, Usas A, Olshanski A, Huard J.
    J Bone Miner Res; 2005 Sep; 20(9):1611-23. PubMed ID: 16059633
    [Abstract] [Full Text] [Related]

  • 6. Role of angiogenesis in bone repair.
    Saran U, Gemini Piperni S, Chatterjee S.
    Arch Biochem Biophys; 2014 Nov 01; 561():109-17. PubMed ID: 25034215
    [Abstract] [Full Text] [Related]

  • 7. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair.
    Hu K, Olsen BR.
    J Clin Invest; 2016 Feb 01; 126(2):509-26. PubMed ID: 26731472
    [Abstract] [Full Text] [Related]

  • 8. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation.
    Brady RT, O'Brien FJ, Hoey DA.
    Biochem Biophys Res Commun; 2015 Mar 27; 459(1):118-23. PubMed ID: 25721667
    [Abstract] [Full Text] [Related]

  • 9. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z, Zhang X, Li L, Wang Q, Yu X, Feng T.
    Mater Sci Eng C Mater Biol Appl; 2013 Jan 01; 33(1):274-81. PubMed ID: 25428072
    [Abstract] [Full Text] [Related]

  • 10. Oxygen sensing and osteogenesis.
    Wang Y, Wan C, Gilbert SR, Clemens TL.
    Ann N Y Acad Sci; 2007 Nov 01; 1117():1-11. PubMed ID: 18056033
    [Abstract] [Full Text] [Related]

  • 11. Monoclonal antibodies as tools for studying the osteoblast lineage.
    Aubin JE, Turksen K.
    Microsc Res Tech; 1996 Feb 01; 33(2):128-40. PubMed ID: 8845513
    [Abstract] [Full Text] [Related]

  • 12. Vis-à-vis cells and the priming of bone formation.
    Riminucci M, Bradbeer JN, Corsi A, Gentili C, Descalzi F, Cancedda R, Bianco P.
    J Bone Miner Res; 1998 Dec 01; 13(12):1852-61. PubMed ID: 9844103
    [Abstract] [Full Text] [Related]

  • 13. Distinct VEGF functions during bone development and homeostasis.
    Liu Y, Olsen BR.
    Arch Immunol Ther Exp (Warsz); 2014 Oct 01; 62(5):363-8. PubMed ID: 24699630
    [Abstract] [Full Text] [Related]

  • 14. Bone tissue remodeling and development: focus on matrix metalloproteinase functions.
    Paiva KB, Granjeiro JM.
    Arch Biochem Biophys; 2014 Nov 01; 561():74-87. PubMed ID: 25157440
    [Abstract] [Full Text] [Related]

  • 15. Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells.
    Zhang R, Gao Z, Geng W, Yan X, Chen F, Liu Y.
    Artif Organs; 2012 Dec 01; 36(12):1036-46. PubMed ID: 23020776
    [Abstract] [Full Text] [Related]

  • 16. Inducing ossification in an engineered 3D scaffold-free living cartilage template.
    Lau TT, Lee LQ, Vo BN, Su K, Wang DA.
    Biomaterials; 2012 Nov 01; 33(33):8406-17. PubMed ID: 22925815
    [Abstract] [Full Text] [Related]

  • 17. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull.
    Geurtzen K, Knopf F, Wehner D, Huitema LF, Schulte-Merker S, Weidinger G.
    Development; 2014 Jun 01; 141(11):2225-34. PubMed ID: 24821985
    [Abstract] [Full Text] [Related]

  • 18. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a.
    Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, Jin Y.
    Biomaterials; 2013 Jul 01; 34(21):5048-58. PubMed ID: 23578559
    [Abstract] [Full Text] [Related]

  • 19. Talking among ourselves: paracrine control of bone formation within the osteoblast lineage.
    Tonna S, Sims NA.
    Calcif Tissue Int; 2014 Jan 01; 94(1):35-45. PubMed ID: 23695526
    [Abstract] [Full Text] [Related]

  • 20. Ets transcription factors and targets in osteogenesis.
    Raouf A, Seth A.
    Oncogene; 2000 Dec 18; 19(55):6455-63. PubMed ID: 11175361
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.