These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


278 related items for PubMed ID: 24079972

  • 1. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF.
    Rodriguez A, Martínez JA, Báez-Viveros JL, Flores N, Hernández-Chávez G, Ramírez OT, Gosset G, Bolivar F.
    Microb Cell Fact; 2013 Sep 30; 12():86. PubMed ID: 24079972
    [Abstract] [Full Text] [Related]

  • 2. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.
    Escalante A, Calderón R, Valdivia A, de Anda R, Hernández G, Ramírez OT, Gosset G, Bolívar F.
    Microb Cell Fact; 2010 Apr 12; 9():21. PubMed ID: 20385022
    [Abstract] [Full Text] [Related]

  • 3. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY, Ling C, Zhang YY, Huang J, Liu JZ.
    Microb Cell Fact; 2014 Feb 10; 13():21. PubMed ID: 24512078
    [Abstract] [Full Text] [Related]

  • 4. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli.
    Meza E, Becker J, Bolivar F, Gosset G, Wittmann C.
    Microb Cell Fact; 2012 Sep 13; 11():127. PubMed ID: 22973998
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli.
    Gu P, Su T, Wang Q, Liang Q, Qi Q.
    Sci Rep; 2016 Jul 13; 6():29745. PubMed ID: 27406890
    [Abstract] [Full Text] [Related]

  • 9. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol.
    Lee MY, Hung WP, Tsai SH.
    World J Microbiol Biotechnol; 2017 Feb 13; 33(2):25. PubMed ID: 28044275
    [Abstract] [Full Text] [Related]

  • 10. Inactivation of pyruvate kinase or the phosphoenolpyruvate: sugar phosphotransferase system increases shikimic and dehydroshikimic acid yields from glucose in Bacillus subtilis.
    Licona-Cassani C, Lara AR, Cabrera-Valladares N, Escalante A, Hernández-Chávez G, Martinez A, Bolívar F, Gosset G.
    J Mol Microbiol Biotechnol; 2014 Feb 13; 24(1):37-45. PubMed ID: 24158146
    [Abstract] [Full Text] [Related]

  • 11. Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli.
    Chen K, Dou J, Tang S, Yang Y, Wang H, Fang H, Zhou C.
    Bioresour Technol; 2012 Sep 13; 119():141-7. PubMed ID: 22728194
    [Abstract] [Full Text] [Related]

  • 12. Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production.
    Martínez JA, Rodriguez A, Moreno F, Flores N, Lara AR, Ramírez OT, Gosset G, Bolivar F.
    BMC Syst Biol; 2018 Nov 12; 12(1):102. PubMed ID: 30419897
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions.
    Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidén G.
    Biotechnol Bioeng; 2005 Dec 05; 92(5):541-52. PubMed ID: 16240440
    [Abstract] [Full Text] [Related]

  • 15. Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions.
    Ahn JO, Lee HW, Saha R, Park MS, Jung JK, Lee DY.
    J Microbiol Biotechnol; 2008 Nov 05; 18(11):1773-84. PubMed ID: 19047820
    [Abstract] [Full Text] [Related]

  • 16. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.
    Liu L, Chen S, Wu J.
    J Ind Microbiol Biotechnol; 2017 Oct 05; 44(10):1385-1395. PubMed ID: 28726163
    [Abstract] [Full Text] [Related]

  • 17. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.
    Rodriguez A, Martínez JA, Millard P, Gosset G, Portais JC, Létisse F, Bolivar F.
    Biotechnol Bioeng; 2017 Jun 05; 114(6):1319-1330. PubMed ID: 28186321
    [Abstract] [Full Text] [Related]

  • 18. [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering].
    Li M, Chen X, Zhou L, Shen W, Fan Y, Wang Z.
    Sheng Wu Gong Cheng Xue Bao; 2013 Jan 05; 29(1):56-67. PubMed ID: 23631118
    [Abstract] [Full Text] [Related]

  • 19. Metabolic engineering for microbial production of shikimic acid.
    Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L.
    Metab Eng; 2003 Oct 05; 5(4):277-83. PubMed ID: 14642355
    [Abstract] [Full Text] [Related]

  • 20. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X, Li M, Zhou L, Shen W, Algasan G, Fan Y, Wang Z.
    Bioresour Technol; 2014 Aug 05; 166():64-71. PubMed ID: 24905044
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.